首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
李丽  张旦萍  范以宁 《无机化学学报》2011,27(11):2201-2204
本工作用溶胶-凝胶法制备不同组成的SO42-/TiO2-ZrO2复合氧化物固体酸催化剂,用微型催化反应评价结合X-射线粉末衍射(XRD)、孔结构/BET表面积测试和NH3-程序升温脱附(NH3-TPD)等表征了SO42-/TiO2-ZrO2复合氧化物固体酸催化剂结构、表面酸性和长叶烯芳构化催化性能。复合氧化物固体酸SO42-/TiO2-ZrO2催化剂具有优良的长叶烯芳构化催化性能,并且其芳构化催化性能与催化剂组成和表面酸性密切相关。随催化剂中nZr/(nZr+nTi)增加,催化剂表面中等强度的酸中心量增加,芳构化产物选择性和收率明显增加,在nZr/(nZr+nTi)=0.5时达极大值。随nZr/(nZr+nTi)进一步增加,不仅催化剂表面酸中心量减少、原料转化率明显下降,而且催化剂酸强度增强,导致芳构化产物选择性和收率下降。催化长叶烯芳构化的二元复合氧化物固体酸SO42-/TiO2-ZrO2催化剂适宜的组成为nZr/(nZr+nTi)=0.5。  相似文献   

2.
磁性纳米固体酸催化剂Zr(SO4)2/Fe3O4的制备及催化性能研究   总被引:12,自引:0,他引:12  
本文提出将磁性和固体酸进行组装从而合成磁性纳米固体酸催化剂的思路,首先制备了纳米级磁性前体-磁基体(Fe3O4);然后筛选出超声波法制备了不同配比的磁性纳米固体酸催化剂Zr(SO4)2/Fe3O4,对其进行了初步表征。并将其作为乙酸丁酯合成反应的催化剂,酯化转化率最高达到84%,利用其磁性即可将催化剂进行分离。  相似文献   

3.
固体超强酸的研制是近20年来催化领域中的热点研究课题之一。起初,人们所研制的SO4^2-/MxOy型固体超强酸中,MxOy多为ZrO2。近年来,研究者们为得到高酸强度和高催化活性的固体超强酸催化剂,以ZrO2为主体,引入第二组分、第三组分组成复合型催化剂,这方面的研究者颇多,也取得了一  相似文献   

4.
张恒  王敏  朱万诚  李言信  赵斌 《应用化学》2011,28(5):608-610
以经H2SO4处理焙烧的高岭土为载体,制备了以其负载的SO2-4/ZrO2-TiO2固体酸催化剂。 用FT-IR、XRD和NH3-TPD等测试技术表征了催化剂的微观结构及酸强度,考察了对环己酮乙二醇缩酮反应的催化活性及稳定性。 结果表明,酸化处理使高岭土表面酸量增加,但酸强度变化不大,而其负载SO2-4/ZrO2-TiO2后,经500 ℃焙烧3 h其酸量及酸强度显著升高。 环己酮用量为0.2 mol、乙二醇0.24 mol、催化剂1.2 g、带水剂环己烷15 mL,回流反应70 min后,缩酮收率可达96.8%,催化剂重复使用5次收率保持在90%以上。  相似文献   

5.
采用复合模板表面活性剂辅助水热法一步合成WO3/ZrO2体系多级孔固体酸催化剂,探讨了煅烧温度对所合成催化剂试样酸强度及酸量的影响,并考察了催化剂针对苯和十二烯的烷基化反应中的催化性能.结果表明,WO3/ZrO2体系催化剂具有较强的酸强度,并且与催化剂的比表面积和晶化程度有密切关系,比表面积的增大和四方相ZrO2的生成能有效地提高催化剂的酸强度.该催化剂具有优良的烷基化反应催化活性和选择性,其中450℃,5h煅烧的WO3/ZrO2催化剂样品酸性最强,其烷基化催化活性和选择性最优.  相似文献   

6.
由异丁烷和1-丁烯烷基化合成高辛烷值汽油虽已被广泛用于工业生产,但由于液体酸催化剂存在许多缺点,寻找固体酸催化剂——分子筛、磺酸树脂及固体超强酸已受到国内外学者的广泛重视。对超强酸的研究多集中在SO_4~(2-)/氧化物催化剂上,此类催化剂的酸强度高、热稳定性好、制备简单,对异丁烷、1-丁烯烷基化具有较高的反应活性,但存在着积炭、寿命  相似文献   

7.
采用沉淀-浸渍法制备了不同金属配比的S2O82-/TiO2-Al2O3固体超强酸催化剂,并研究了其在催化水解花生壳制备乙酰丙酸反应中的作用。实验发现n(Al)∶n(Ti)=1∶2时催化效果最佳,并进一步考察了其水解温度,水解时间,固体酸用量和液固比对乙酰丙酸得率的影响。采用响应面法对水解工艺进行了优化,并建立二次回归模型。结果表明,当水解温度为235℃、水解时间为30min、固体酸用量为4.6%和液固比18∶1(mL/g)时为较优的制备工艺,在该工艺条件下,乙酰丙酸得率为26.43%。  相似文献   

8.
采用浸渍法对无定形ZnO分别用稀H2SO4和(NH4)2S2O8溶液处理, 制备了SO42-/ZnO和S2O82-/ZnO固体酸. 通过固体离子交换法制备了Cu(Ⅰ)/SO42-/ZnO和Cu(Ⅰ)/S2O82-/ZnO两种催化剂, 并采用XRD, FTIR, TPD和TPR等进行了表征. 研究结果表明, 用稀H2SO4和(NH4)2S2O8溶液分别浸渍处理无定形ZnO, 经过500-600 ℃高温焙烧后得到的SO42-/ZnO和S2O82-/ZnO固体酸表面形成了Zn3O(SO4)2物种; py-FTIR结果表明, 两者均具有B酸中心和L酸中心, 进一步的NH3-TPD研究结果证明, 制备的固体酸NH3脱附峰均出现在543 ℃附近, 属于高强度固体酸. 结构分析认为, 由于SO42-强烈的电子诱导作用, SO42-和ZnO形成的桥式配位物种产生了B酸中心和L酸中心, 而其螯合配位形成的物种没有酸性. SO42-/ZnO和S2O82-/ZnO固体酸与CuCl进行离子交换所制备的Cu(Ⅰ)/SO42-/ZnO和Cu(Ⅰ)/S2O82-/ZnO催化剂的Cu(Ⅰ)易于还原, 对甲醇氧化羰基化合成碳酸二甲酯(DMC)表现出较高的活性和选择性, DMC选择性为98.3%, 时空收率可达到1.9 g(g·h).  相似文献   

9.
利用浸渍水解法在大孔SiO2载体上组装固体酸制备出大孔径SO42-/ZrO2-SiO2复合固体酸催化剂。用扫描电镜、红外光谱仪和粉末X射线衍射仪等对其进行表征,结果表明:大孔SiO2载体的毛细管效应促使ZrO2以纳米薄层方式均匀地沉积在SiO2薄层表面,并抑制了ZrO2晶体的生长和晶相的转变,载体的大孔全连通的结构赋予该复合材料高的通透性(孔径在1~2μm)、两面活性点和大的比表面积(约156 m2.g-1)。Hammett指示剂法测得经550℃焙烧后产物的酸强度H0值小于-13.75,属于固体超强酸。以乙酸正丁酯的合成为探针反应考察硫酸浸渍液浓度、焙烧温度等制备条件对其催化活性的影响,结果表明,该SO42-/ZrO2-SiO2固体酸具有较好的催化活性,当焙烧温度为550℃和硫酸浸渍液浓度为1.5 mol.L-1时,超强酸对酯化反应的催化酯化率达到97%。  相似文献   

10.
采用共沉淀法和浸渍法在不同条件下制备了稀土-SO42-/ZrO2系列固体酸催化剂。使用废油脂与甲醇的酯交换反应评价了催化剂活性,并通过X射线衍射、红外光谱、比表面积测定表征方法考察了催化剂结构和性能的关系。结果表明,La摩尔掺杂量4%、焙烧温度600℃时制得的SO42-/ZrO2-La2O3催化剂活性最高,此时脂肪酸甲酯的产率为64.68%,且具有较好的重复使用性。稀土的引入使活性四方相ZrO2更加稳定,600℃焙烧使催化剂既具有较多活性四方相ZrO2,又具有较大比表面积,从而提高了催化剂活性。催化剂中形成了固体超强酸结构,且改性后酸强度增大,催化剂活性中心数目增加。  相似文献   

11.
利用三苄基氧化锡与2-噻吩甲酸和2-唑甲酸反应,合成了六聚体苄基锡氧2-噻吩甲酸酯(1)和六聚体苄基锡氧2-唑甲酸酯(2)鼓形簇合物.通过元素分析、红外光谱和X射线单晶衍射对其结构进行了表征.测试结果表明:化合物1属三斜晶系,空间群p1,a=1.2760(3)nm,b=1.3056(3)nm,c=1.3343(3)nm,α=105.65(3)°,β=96.27(3)°,γ=97.20(3)°,Z=1,V=2.0997(7)nm3,Dc=1.809g/cm3,μ=2.097mm-1,F(000)=1116,R=0.0651,wR=0.1292.化合物2属三斜晶系,空间群p1,a=1.2240(4)nm,b=1.3673(4)nm,c=1.3744(4)nm,α=107.760(4)°,β=98.069(5)°,γ=91.480(5)°,Z=2,V=2.1631(12)nm3,Dc=3.373g/cm3,μ=3.799mm-1,F(000)=2136,R=0.0382,wR=0.079.它们均为鼓形簇状结构,锡原子呈畸变的八面体构型.化合物1通过分子间S…S近距离作用,形成一维链状结构.  相似文献   

12.
The title complex {[(n-C8H17)2Sn(O2CCH2CS2NC4H8O)]2O}2 has been synthesized by the reaction of (morpholinylthiocarbamoylthio)acetic acid with the di-n-octyltin oxide in 1∶1 molar ratio. The complex was characterized by elemental analysis, IR and 1H NMR. The crystal and molecular structure of complex was determined by X-ray single crystal diffraction. The crystal belongs to triclinic system with space group P1 and unit cell dimensions: a=1.201 5(9) nm, b=1.481 8(11) nm, c=1.894 1(14) nm, α=72.485(10)°, β=88.586(10)°, γ=66.893(9)°, and Z=1, μ=1.034 mm-1, V=2.941(4) nm3, Dc=1.295 g·cm-3, F(000)=1 196, R1=0.058 8, wR2=0.155 8. The complex is a centrosymmetric structure with a four-membered central endo-cyclic Sn2O2 unit in which two bridged oxygen atoms both connect with an exo-cyclic tin atom. The endo-cyclic tin atoms and the exo-cyclic tin atom are all five-coordinate and have coordination geometry of distorted trigonal bipyramid with an additional weak coordination carboxylate oxygen. Four carboxylate ligands are divided into two types. And two of them are monodentate and connecting to each of exo-cyclic tin atoms by using one oxygen atom, whereas the others bridge to each pair of exo-and endo-cyclic tin atoms utilizing one oxygen atom. CCDC: 277048.  相似文献   

13.
The title compound, {[n-Bu2Sn(O2CCH2CS2NC4H8)]2O}2, has been synthesized by the reaction of (tetrahydro-pyrrodithiolocarbamoylthio)acetic acid with the di-n-bubyltin oxide in 1∶1 molar ratio. The complex has been characterized by elemental analysis, IR and NMR. The crystal structure of it has been determined by X-ray single crystal diffraction. And the results showed that the crystal belongs to triclinic system with space group P1 and some crystal parameters: a=1.220 2(9) nm, b=1.315 8(10) nm, c=1.380 4(10) nm, α=111.215(9)°, β=99.357(9)°, γ=96.075(10)°, V=2.006(2) nm3, Z=1, F(000)=908, μ=1.489 mm-1, Dc=1.474 g·cm-3, R1=0.037 5, wR2=0.0839. The complex has a centrosymmetric dimer structure mode with a four-membered central endo-cyclic Sn2O2 unit in which two bridged oxygen atoms both connect with an exo-cyclic tin atom which has a distorted octahedron. Each of the endo-cyclic tin atoms exhibits a distorted trigonal bipyramid coordination geometry with an additional weak coordination carboxylate oxygen. Four carboxylate ligands are divided into two types. And two of them are bidentate and connecting to each of exo-cyclic tin atoms by using both oxygen atoms, whereas the others bridge to each pair of exo-and endo-cyclic tin atoms utilizing one oxygen atom only. CCDC: 220513.  相似文献   

14.
The title complex bis(4-aminophenylacetate)triphenylantimony(V) has been synthesized by the reaction of triphenylantimony dibromide with 4-aminophenylacetic acid in 1∶2 molar ratio. The complex was characterized by elemental analysis, IR spectra, NMR ( 1H, 13C) and X-ray diffraction crystal structure analysis. This complex crystallizes in the monoclinic system, space group C2/c with a=2.279 4(2) nm, b=0.957 10(10) nm, c=1.335 49(15) nm, β=93.781(2)°. The molecular structure adopts a distorted trigonal bipyramidal geometry around the antimony atom. In the crystal structure molecules are connected by intermolecular N-H…O hydrogen-bonding interactions forming a two-dimensional network structure. CCDC: 726039.  相似文献   

15.
磁性固体超强酸SO42-/ZrO2-Al2O3-Fe3O4的制备与性能研究   总被引:3,自引:0,他引:3  
利用化学共沉淀法将磁性基质与固体酸组装制备磁性纳米固体超强酸催化剂,利用XRD、Raman、TG-DSC、M?ssbauer、TEM、HRTEM等手段对样品性质进行表征。结果表明:磁性基质的引入赋予固体超强酸以超顺磁性;Fe3O4、Al2O3粒子弥散在ZrO2基质中,烧结过程中阻碍了扩散传质的进行以及晶界移动,抑制了ZrO2晶体生长,稳定了四方晶相(T-ZrO2);样品粒径分布集中,平均约为32 nm;HRTEM显示T-ZrO2晶体生长取向于(101)方向,晶面间距d(101)=0.29 nm;Hammett指示剂法测得经600 ℃焙烧后产物的酸强度Ho<-13.8,酸强度大于浓硫酸(Ho=-11.93)。以柠檬酸三丁酯的合成作为磁性固体超强酸SO42-/ZrO2-Al2O3-Fe3O4催化剂的探针反应,结果表明外磁场的引入提高了柠檬酸的转化率。  相似文献   

16.
The novel seven-coordinate complex [(n-Bu)2Sn(C10H8N2O3)(C2H5OH)]2 (C10H8N2O32- is the dinegative ion of 2-oxo-propionic acid benzoyl hydrazone) was synthesized by the reaction of (n-Bu)2SnO with 2-oxo-propionic acid benzoyl hydrazone in 1∶1 molar ratio in benzene-ethanol (V/V, 3/1), and its structure was characterized by X-ray single crystal diffraction. The crystal belongs to a tetragonal system with space group I41/a, a=2.4890(2)nm, b=2.4890(2)nm, c=1.5170(3)nm, V=9.398(2)nm3, Z=8, F(000)=3968, Dc=1.366g·cm-3, and the structure was refined to final R1=0.0530, wR2=0.0971. The structure of the title complex is described as a dimer through weak interactions of Sn…O bonding and hydrogen bond. The tin atoms rendered sev-en-coordination in a distorted pentagonal bipyramid geometry structure, four oxygen atoms [O1, O2, O2#1 and O4] and one nitrogen atom N2 formed the equatorial plane and C11-Sn1-C15 is the axis. CCDC: 212696.  相似文献   

17.
农作物不仅需要吸收C、H、O、N、P、K、Ca、Mg等营养元素,而且还需要吸收B、Mn、Zn等营养元素,以维持它们正常生长的需要.尿素是一种含氮量很高(46.60%)、性能很好的氮肥,而硼化合物又是一种很重要的微量元素肥料.因此,研究尿素与硼化合物间的相互作用,以得到既含氮又含硼的一种化合物,是一种很有意义的工作。目前,国外已开展了尿素与硼酸间相互作用的研究工作.研究结果表明,在一定条  相似文献   

18.
IntroductionSince K pf[1]discovered that dicyclopenta die-nyltitanium dichloride possesses antitumour action in1979,a large number of cyclopentadienyltitanium com-plexes with different substituents have been synthe-sized[2,3].The experimental data reveal …  相似文献   

19.
二正丁基氧化锡和对氨基苯乙酸按1:1反应,合成了二正丁基锡对氨基苯乙酸酯配合物{[n-Bu2Sn(O2CCH2C6H4NH2-p)]2O}2.经X-射线衍射方法测定了其晶体结构,结构属单斜晶系,空间群P21/n.配合物是以Sn2O2构成的平面四元环为中心环的二聚体结构,锡原子均为五配位的畸变三角双锥构型.对其结构进行量子化学从头计算,探讨了配合物的稳定性、分子轨道能量以及一些前沿分子轨道的组成特征.  相似文献   

20.
New hydrated lanthanide phthalates have been hydrothermally prepared with cerium and neodymium in different reaction media involving water or mixed water-ethanol solvent. The monohydrated Ln2(1,2-bdc)3(H2O) (Ln=Ce or Nd) and dihydrated Nd2(1,2-bdc)3(H2O)2 forms have been characterized by single-crystal analysis. Their structures consist of infinite inorganic chains of lanthanide-centered polyhedra linked to each other through the phthalate ligands in order to generate mixed organic-inorganic layered structure. The two hydrated structures differ by the number of terminal water species attached to the lanthanide cations, which induce symmetry change from a triclinic (Nd2(1,2-bdc)3(H2O)2) to an orthorhombic (Nd2(1,2-bdc)3(H2O)2) cell for neodymium whereas the cerium-based phase only exists in the monohydrated form, with two distinct symmetries (orthorhombic or triclinic). Structural comparisons with the other members of the lanthanide phthalate series with identical chemical formula are also discussed. Thermal X-ray diffraction experiment indicates that the transformation from dihydrate form into the monohydrated form does not occur during a heating process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号