首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multiresidue method was developed to measure low levels of 8 fluoroquinolones (norfloxacin, ofloxacin, danofloxacin, ciprofloxacin, desethylene ciprofloxacin, enrofloxacin, sarafloxacin, and difloxacin) and 4 quinolones (oxolinic acid, flumequine, nalidixic acid, and piromidic acid). Method detection limits range from 0.1 ng/g for quinolones to 0.4 ng/g for fluoroquinolones. Average recoveries range from 57 to 96%, depending on analyte and commodity; relative standard deviations are all less than 18%. The drugs are extracted from tissues using a mixture of ethanol and 1% acetic acid, diluted in aqueous HCI, and defatted by extraction with hexane. The compounds are further isolated using cation-exchange solid-phase extraction and measured using liquid chromatography with electrospray tandem mass spectrometry detection. The method has been evaluated and applied to the analysis of salmon, trout, and shrimp. Detectable residues were observed in 10 out of 73 samples, at concentrations ranging from 0.28 to 16 ng/g.  相似文献   

2.
建立了高效液相色谱-电喷雾串联质谱联用测定蜂蜜中恩诺沙星、环丙沙星、诺氟沙星、氧氟沙星、双氟沙星、恶喹酸、氟甲喹、沙拉沙星、司帕沙星、丹诺沙星、氟罗沙星、马波沙星、伊诺沙星、奥比沙星、吡哌酸、培氟沙星、洛美沙星、西诺沙星和萘啶酸等19种喹诺酮类药物残留的方法。比较酸性溶液阳离子固相萃取(PCX柱)、近中性缓冲溶液反相固相萃取(HLB柱)和碱性溶液阴离子固相萃取(PAX柱)3种不同提取净化方法的提取效果,最终选择使用碱性溶液溶解蜂蜜样品,强阴离子固相萃取柱一步富集净化。以甲醇和0.1%甲酸溶液作为流动相,C18作为分析色谱柱,采用梯度洗脱方式进行液相色谱分离,选择离子反应监测模式检测19种喹诺酮类药物,内标方法定量。在1~100 μg/L范围内,19种喹诺酮类药物的线性相关系数均大于0.991。通过实际样品的添加回收试验,方法的定量限(S/N=10)为1.0 μg/kg,3个添加水平的回收率为71%~118%,相对标准偏差为4.2%~6.7%。  相似文献   

3.
A simple and effective multi‐residue analysis method is presented for the extraction and determination of eleven quinolones (pipemidic acid, enoxacin, norfloxacin, ciprofloxacin, lomefloxacin, enrofloxacin, gatifloxacin, difloxacin, oxolinic acid, nalidixic acid and flumequine) in fish tissues. In this study, multi‐residue separations on four columns packed with 5 μm or sub‐2 μm particles were simultaneously developed for the purpose of comparison. Various gradients were optimized and best resolutions were achieved on each column. A short and sub‐2 μm particle‐sized HPLC column was chosen for its advantages in analysis time and column performance. Additionally, considering the matrix effect of the complex crude fish tissue, an effective extraction protocol was also established for sample pre‐treatment procedure. Good recoveries (71–98%) were obtained from samples fortified with a mix of eleven quinolones at three levels, with satisfactory relative standard deviations and limits of detection. As a result, the sub‐2 μm HPLC column and proposed analytical procedures have been evaluated and applied to the analysis of different fish tissues. Detectable residues were observed in 8 of 30 samples, at concentrations ranging from 4.74 to 23.27 μg/kg.  相似文献   

4.
Summary A high-performance thin-layer chromatographic method based on solid-phase extraction has been developed for the qualitative determination of seven quinolones (enrofloxacin, ciprofloxacin, danofloxacin, norfloxacin, flumequine, oxolinic acid and nalidixic acid) in pork muscle. After preparation of the samples by extraction and clean-up by solid-phase extraction on reversed-phase cartridges, extracts were spotted and eluted on silica gel plates. The plate is first inspected under UV illumination at 312 nm, then sprayed with terbium chloride solution and again monitored under 312 nm UV. The method has been validated to a level of 15 μg kg−1 for enrofloxacin, ciprofloxacin, danofloxacin, norfloxacin and 5 μg kg−1 for flumequin, oxolinic acid and nalidixic acid.  相似文献   

5.
In this study, a simplified method for the extraction and determination of seven fluoroquinolone residues (danofloxacin, difloxacin, enrofloxacin, marbofloxacin, orbifloxacin, ofloxacin, and sarafloxacin) and three quinolones (oxolinic acid, flumequine, and nalidixic acid), in porcine muscle, table eggs, and commercial whole milk, which required no cleanup step, was devised. This procedure involves the extraction of analytes from the samples via liquid‐phase extraction, and the subsequent quantitative determination was accomplished via LC‐fluorescence detection. Analyte separation was successfully conducted on an XBridge‐C18 column, with a linear gradient mobile phase composed of acetonitrile and 0.01 M oxalic acid buffer at pH=3.5. The one‐step liquid‐liquid extraction method evidenced good selectivity, precision (RSDs=0.26–15.07%), and recovery of the extractable analytes, ranging from 61.12 to 115.93% in matrices. The LOQs ranged from 0.3 to 25 μg/kg. A survey of ten samples purchased from local markets was conducted, and none of the samples harbored fluoroquinolone residues. This method is an improvement over existing methodologies, since no additional cleanup was necessary.  相似文献   

6.
A sensitive multi-residue analytical method was developed for the determination of ten quinolones: enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, oxolinic acid, nalidixic acid, and flumequine in bovine liver and porcine kidney. A simple liquid extraction step followed by a solid phase extraction clean up procedure was applied for the extraction of quinolones from liver and kidney tissues. Recoveries of the extraction varied between 82 and 88% for bovine liver and 92 and 95% for porcine kidney. Separation was performed on an ODS-3 PerfectSil Target (250 x 4 mm) 5 microm analytical column at 25 degrees C. The mobile phase consisted of a mixture of TFA 0.1%-CH(3)CN-CH(3)OH, delivered at a flow rate of 1.2 mL/min according to a gradient program. Elution of quinolones and the internal standard (caffeine, 7.5 ng/microL) was complete within 27 min. Photodiode array detection was used for monitoring the eluants at 275 and 255 nm. The method was fully validated according to the European Union Decision 2002/657/EC, determining linearity, selectivity, decision limit, detection capability, accuracy, and precision. The LODs of the specific method of quinolone determination in bovine liver varied between 3 and 7 microg/kg and in porcine kidney between 3 and 4 microg/kg.  相似文献   

7.
The aim of this work was to develop an HPLC method for the simultaneous determination of ten quinolones: enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, oxolinic acid, nalidixic acid, and flumequine, in various tissues of food-producing animals. Separation was achieved on a PerfectSil Target column (250 mm x 4 mm, ODS-3, 5 microm), by MZ-Analysentechnik (Germany), at room temperature. The mobile phase consisted of 0.1% TFA-CH(3)OH-CH(3)CN and was delivered by a gradient program of 35 min. The detection and quantitation was performed on a photodiode array detector at 275 and 255 nm. Caffeine (7.5 ng/microL) was used as the internal standard (IS). Analytes were isolated from tissue samples by 0.1% methanolic TFA solution. SPE, using LiChrolut RP-18 cartridges, was applied for further purification. The extraction protocol was optimized and the final recoveries varied between 92.0 and 107.4%. The method was fully validated according to Commission Decision 2002/657/EC. Limits of quantitation for the examined quinolones extracted from each tissue were much lower than the respective Maximum Residue Levels, ranging between 30 and 50 microg/kg for bovine tissue, between 30 and 55 microg/kg for ovine tissue, and between 40 and 50 microg/kg for porcine tissue.  相似文献   

8.
A reversed-phase high-performance liquid chromatographic method with tandem mass-spectrometric detection was developed and validated for the simultaneous analysis of eight quinolones and fluoroquinolones (oxolinic acid, flumequine, piromidic acid, enrofloxacin, ciprofloxacin, danofloxacin, sarafloxacin and orbifloxacin) in trout tissue, prawns and abalone. The analytes were extracted from homogenised tissue using acetonitrile and the extracts subjected to an automated two-stage solid-phase extraction process involving polymeric reversed-phase and anion-exchange cartridges. Good recoveries were obtained for all analytes and the limit of quantification was 5 microg/kg (10 microg/kg for ciprofloxacin). The limit of detection was 1-3 microg/kg, depending on the analyte and matrix. Confirmation of the identity of a residue was achieved by further tandem mass-spectrometric analysis. A procedure for estimating the uncertainty associated with the measurement is presented.  相似文献   

9.
鸡肉中11种喹诺酮类药物多残留的高效液相色谱检测   总被引:4,自引:0,他引:4  
林保银 《色谱》2009,27(2):206-210
建立了用荧光检测器同时测定11种喹诺酮类药物(包括诺氟沙星、培氟沙星、环丙沙星、恩诺沙星、氧氟沙星、达氟沙星、洛美沙星、二氟沙星、沙拉沙星、恶喹酸和氟甲喹)在鸡肉中的多残留的高效液相色谱检测方法。鸡肉样品用10%三氯乙酸-乙腈(体积比为7∶3)提取两次并稀释,随后用反相固相萃取柱净化。采用Hypersil BDS-C18色谱柱分离,以乙腈和水为流动相梯度洗脱,荧光检测器用程序编程检测波长检测。11种喹诺酮类药物标准曲线的线性范围为5~1200 μg/L,相关系数大于0.998。在高、中、低三个添加水平下的回收率为56%~119%,批内相对标准偏差为0.4%~16.1%,批间相对标准偏差为1.4%~23.0%。检出限和定量限分别为1~23 μg/kg和4~40 μg/kg。该方法快速、灵敏,达到了兽药残留检测的要求。  相似文献   

10.
A liquid chromatographic method with fluorescence detection was developed for simultaneous determination of norfloxacin, ofloxacin, ciprofloxacin, pefloxacin, lomefloxacin, danofloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid, and flumequine in milk The samples were extracted with 10% trichloroacetic acid/acetonitrile (9 + 1, v/v) and cleaned by Strata-X reversed-phase solid-phase extraction cartridges. The 11 quinolones were separated on a reversed-phase C18 column (Hypersil BDS-C18) with mobile phase gradient elution and detected with fluorescence by means of a wavelength program. The recoveries for milk fortified with the 11 quinolones at 3 levels were 69-88% with acceptable relative standard deviations of <9% (intraday) and <14% (interday). The limits of detection were 23 microg/L for enrofloxacin, and 1-9 microg/L for the other 10 quinolones.  相似文献   

11.
The present work describes a method based on solid-phase extraction (SPE) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for the simultaneous determination of three quinolones (pipemidic acid, oxolinic acid and flumequine) and twelve fluoroquinolones (marbofloxacin, fleroxacin, pefloxacin, levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, danofloxacin, lomefloxacin, difloxacin, sarafloxacin, and moxifloxacin) in different infant and young children powdered milks. After suitable deproteination of the reconstituted powdered samples, a SPE procedure was developed providing recovery values higher than 84% (RSDs lower than 13%) for all the analytes, with limits of detection between 0.04 and 0.52 μg/kg. UPLC-MS/MS analyses were carried out in less than 10 min. Sixteen infant and young children powdered milk samples of different origin, type and composition bought at Spanish markets were analyzed. Residues of the selected antibiotics were not detected in any of the analyzed samples.  相似文献   

12.
A rapid qualitative method using on-line column-switching liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and validated for screening 13 target veterinary drugs: four macrolides - erythromycin A, josamycin (leucomycin A3), kitasamycin (leucomycin A5), and tylosin A; six (fluoro)quinolones - ciprofloxacin, danofloxacin, enrofloxacin, flumequine, oxolinic acid, and sarafloxacin; and lincomycin, virginiamycin M1, and trimethoprim in different animal muscles. Clindamycin, norfloxacin, nalidixic acid, oleandomycin, ormetoprim, and roxithromycin were used as the internal standards. After simple deproteination and analyte extraction of muscle samples using acetonitrile, the supernatant was subjected to on-line cleanup and direct analysis by LC/MS/MS. On-line cleanup with an extraction cartridge packed with hydrophilic-hydrophobic polymer sorbent followed by fast LC using a short C18 column resulted in a total analysis cycle of 6 min for 19 drugs. This screening method considerably reduced the time and the cost for the quantitative and confirmatory analyses. The application of a control point approach was also introduced and explained.  相似文献   

13.
A simple reversed-phase high-performance liquid chromatographic method was developed and validated for simultaneous analysis of nine quinolones (ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, flumequine, marbofloxacin, nalidixic acid, oxolinic acid, sarafloxacin) in chicken tissue. The analytes were extracted from homogenized muscle using an acetonitrile basic solution. After centrifugation and partial evaporation, direct injection was possible. Three different HPLC conditions were applied to quantify the residual quinolones. Separation was achieved on a PLRP-S column and detection was performed with a monochromator fluorescence detector. The recovery, the limit of detection, the limit of quantification, the accuracy and the precision of the method were evaluated from spiked tissue samples at concentration levels ranging from 15 microg kg(-1) to 300 microg kg(-1) according to the maximum residue limit of each quinolone. This method is also suitable for porcine, bovine, ovine and fish muscle tissue.  相似文献   

14.
A sensitive and selective confirmatory analytical method for the multi-residue determination of seven quinolones (ciprofloxacin, enrofloxacin, sarafloxacin, danofloxacin, oxolinic acid, nalidixic acid and flumequine) in gilthead seabream (Sparus aurata) was developed. The sample pre-treatment involves extraction with 0.1M NaOH and purification by solid-phase extraction (SPE) on Waters Oasis HLB cartridges followed by the determination of all compounds in a single LC-electrospray ionization MS/MS run. Separation was achieved on a Perfectsil ODS-2, 5mum, 250mmx4mm, analytical column (MZ Analysentechnik) by gradient elution using a mixture of 0.2% (v/v) formic acid, methanol and acetonitrile within 30min. Multiple reaction monitoring (MRM) was used for selective detection of each quinolone. Accuracy was evaluated through recovery studies at three different fortification levels. The mean recoveries are between 90 and 132% for the selected levels with RSD values lower than 20%. The method presents satisfactory results for linearity, precision and limits of quantification. The latter are much lower than the maximum residue limits (MRLs) established by the European Union for quinolones in fish tissues (6-8mug/kg).  相似文献   

15.
A number of drugs in the quinolone and fluoroquinolone families, approved for veterinary treatment of food animals by various countries, may be used to treat bee diseases and thereby contaminate honey. An LC-MS/MS method has been developed for the quantification of the quinolones: flumequine, nalidixic acid, oxolinic acid, and pipemidic acid; and the fluoroquinolones ciprofloxacin, danofloxacin, difloxacin, enrofloxacin, norfloxacin, ofloxacin, orbifloxacin, marbofloxacin, sarafloxacin, and sparfloxacin. A method-matched calibration curve is used with several internal standards, i.e., ciprofloxacin-d8, Iomefloxacin, and cinoxacin, to correct for the various types of honey matrices: white, light, medium, and dark colors. Enoxacin is added as an external recovery standard. The LOD values range from 0.05 microg/kg (ofloxacin) to 0.4 microg/kg (flumequine). The compounds are verified by LC-MS/MS retention times and ion ratios. Method uncertainty was determined using two separate analytical systems. The method has successfully measured the presence of norfloxacin in several samples of honey imported into Canada.  相似文献   

16.
This paper presents the multiresidue determination of the series of quinolones regulated by the European Union (marbofloxacin, ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid and flumequine) in bovine and porcine plasma using capillary electrophoresis and liquid chromatography with ultraviolet detection (CE‐UV, LC‐UV), liquid chromatography–mass spectrometry and –tandem mass spectrometry (LC‐MS, LC‐MS/MS) methods. These procedures involve a sample preparation by solid‐phase extraction for clean‐up and preconcentration of the analytes before their injection into the separation system. All methods give satisfactory results in terms of linearity, precision, accuracy and limits of quantification. The suitability of the methods to determine quinolones was evaluated by determining the concentration of enrofloxacin and ciprofloxacin in real samples from pig plasma and cow plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
建立了液相色谱-串联质谱技术同时检测水产品中15种喹诺酮类药物(氟罗沙星、氧氟沙星、依诺沙星、诺氟沙星、环丙沙星、恩诺沙星、洛关沙星、单诺沙星、奥比沙星、双氟沙星、沙拉沙星、司帕沙星、口恶喹酸、萘啶酸、氟甲喹)残留量的方法.试样中残留的喹诺酮类药物采用乙腈提取,提取液经正已烷液液分配脱脂后,以强阳离子固相萃取小柱净化,液相色谱.串联质谱法测定.对液/质分离条件与样品前处理条件进行了优化,并对喹诺酮类药物在分析过程的稳定性进行了研究.15种喹诺酮类药物在1.0~100 μg/L范围内线性关系良好,相关系数为0.9924~0.9992.在0.002~0.04 mg/kg浓度范围内,平均加标回收率在79.9%~93.8%;相对标准偏差为4.8%~14.6%.方法可满足水产品中喹诺酮类药物多残留检测与确证的需要.  相似文献   

18.
A simple chromatographic method is described for assaying 15 quinolones and fluoroquinolones (pipemidic acid, marbofloxacin, enoxacin, ofloxacin, norfloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid, nalidixic acid, flumequine and piromidic acid), in urine and pharmaceutical samples. The determination was achieved by LC using an RP C18 analytical column. A mobile phase composed of mixtures of methanol-ACN-10 mM citrate buffer at pH 3.5 and 10 mM citrate buffer at pH 4.5, delivered under an optimum gradient program, at a flow rate of 1.5 mL/min, allows to accomplish the chromatographic separation in 26 min. For detection, diode-array UV-Vis at 280 nm and fluorescence detection set at excitation wavelength/emission wavelength: 280/450, 280/ 495, 280/405 and 320/360 nm were used. Detection and quantification limits were between 0.3-18 and 0.8-61 ng/mL, respectively. The method was validated in terms of interday (n = 6) and intraday (n = 6) precision and accuracy. The procedure was successfully applied to the analysis of human and veterinary pharmaceuticals. Also, ofloxacin was determined in human urine samples belonging to a patient undergoing treatment with this active principle, among others.  相似文献   

19.
建立了同时检测动物肌肉组织中9种喹诺酮类药物、7种磺胺类药物和甲氧苄啶的高效液相色谱检测方法.动物肌肉组织样品用磷酸盐缓冲液提取,HLB固相萃取柱净化,洗脱液用氮气吹至近干,磷酸盐缓冲液复溶,以甲酸水溶液-乙腈体系为流动相,梯度洗脱,荧光-紫外检测器串联测定.本方法的线性良好,相关系数r>0.9987;平均回收率为70.6%~103.4%,相对标准偏差为1.2%~11.4%; 荧光检测器测定喹诺酮类药物的检出限为0.04~0.4 μg/kg;紫外检测器测定磺胺类药物和甲氧苄啶的检出限为3.5 μg/kg.本方法具有简便、通用性强的特点,适用于动物肌肉组织中上述药物的常规残留检测.  相似文献   

20.
A rapid and sensitive analytical method was developed for the residue analysis of ten quinolones (enoxacin (ENO), ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin (SAR), oxolinic acid (OXO), nalidixic acid (NAL), and flumequine (FLU)) in cow's milk. The analytes were extracted from milk by a deproteinization step followed by a simple SPE cleanup procedure using LiChrolut RP-18 Merck cartridges. Recoveries varied between 75 and 92%. HPLC separation was performed at 25 degrees C using an ODS-3 PerfectSil Target (250 x 4 mm(2)) 5 microm analytical column (MZ-Analysentechnik, Germany). The mobile phase consisted of a mixture of TFA 0.1%-CH(3)CN-CH(3)OH, delivered by a gradient program at the flow rate of 1.2 mL/min. Elution of the ten analytes and the internal standard (caffeine, 7.5 ng/microL) was completed within 27 min. Column effluent was monitored using a photodiode array detector, set at 275 and 255 nm. The developed method was validated according to the criteria of Commission Decision 2002/657/EC. The LODs of the specific method of quinolones' determination in milk varied between 1.5 and 6.8 ng/microL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号