首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
以三维多孔泡沫铜为基底, 通过直接电沉积的方法制备锂离子电池Cu6Sn5合金负极材料. 发现合金表面大量的微孔和“小岛”不仅增大电极的表面积, 而且显著缓解充放电过程中的体积变化. 测得三维多孔Cu6Sn5合金的初始放电(嵌锂)容量为620 mAh·g-1, 充电(脱锂)容量为560 mAh·g-1, 库仑效率达到90.3%, 具有较好的循环性能. 扫描电子显微镜(SEM)结果显示, 在泡沫铜基底上制备的Cu6Sn5合金电极具有比通常的铜片基底更好的结构稳定性, 经过50 周充放电循环后无明显的脱落现象.  相似文献   

2.
Sn-Sb合金的氢电弧等离子体法制备及其电化学性能   总被引:5,自引:0,他引:5  
采用氢电弧等离子体方法成功地合成了锡锑合金纳米颗粒, 通过TEM、XRD、恒电流充放电测试等手段研究了其形态、结构及电化学行为. 结果表明: 锡锑合金纳米颗粒为球形形貌, 颗粒平均直径为138 nm, 由Sn和SnSb两相组成;经电化学性能测试, 该锡锑纳米颗粒首次嵌锂容量高达930 mAh•g−1, 可逆容量为701 mAh•g−1, 20次循环后容量仍为566 mAh•g−1, 容量保持率为81%. 用氢电弧等离子体方法制备的Sn-Sb合金纳米材料是有希望的锂离子电池负极材料.  相似文献   

3.
应用电沉积技术制备了三维网状结构的Sn-Co合金负极材料, 采用XRD、SEM和电化学方法考察了该负极材料的结构和性能. XRD分析表明, 该三维网状结构的Sn-Co合金镀层为六方固溶体结构. 其电化学性能测试表明: 三维网状结构Sn-Co合金微晶电极的性能稳定, 其首次放电容量高达493.4 mAh•g−1, 首次库仑效率达80.03%, 而平面结构Sn-Co合金电极的首次库仑效率为63.47%. 经50周充放电循环后, 三维网状结构Sn-Co合金电极的放电容量为329.6 mAh•g−1, 放电容量保持率为66.8%;SEM分析表明: 三维网状Sn-Co合金电极表面是由大小不一、高低不同的“岛”紧密排列在一起;“岛”和多孔结构的存在, 缓冲了锂嵌入时体积的膨胀, 部分抑制了材料结构的变化, 减缓了电极容量的衰减, 改善了电极的循环性能.  相似文献   

4.
本工作采用直接在铜箔表面恒电流电沉积的方法制备Sn负极,以NiCl2为沉积电解液的添加剂得到了Sn空心管,提高了单纯Sn负极的可逆比容量,60次循环后仍剩余184.3 mAh·g-1。进一步引入聚吡咯进行表面修饰改性,有效地提高了沉积电极的电化学循环性能,60次循环后仍剩余440.6 mAh·g-1可逆比容量,同时具备良好的循环稳定性。沉积电极可直接用作锂离子电池负极,无需任何粘结剂,电极装配操作简单。  相似文献   

5.
采用化学镀方法制备三维多孔铜.以其作为集流体,借助电沉积制备三维多孔Sn-Co合金电极.X-射线衍射(XRD),扫描电镜(SEM)分析表明,以多孔铜为集流体制备的SnCo合金电极主要存在CoSn2相和纯Sn相,为三维多孔结构.充放电结果显示,三维结构SnCo合金电极比平面铜集流体上镀得的SnCo合金电极表现出更优越的充放电性能.前者的首次放电(嵌锂)容量为636.3mAh/g,充电(脱锂)容量为528.7mAh/g,首次库仑效率为83.1%,70周后容量为529.5mAh·g-1,保持率为82.6%.此外,还应用电化学阻抗初步研究了三维Sn-Co合金电极在充放电过程发生的嵌脱锂过程.  相似文献   

6.
以氢气泡为动力学模板电沉积获得多孔铜, 并通过热处理增强其结构稳定性. 进一步将多孔铜作为基底通过电沉积制备Cu-Sn合金负极. XRD结果给出其组成为Cu6Sn5合金, 扫描电子显微镜(SEM)观察到Cu6Sn5合金电极为三维(3D)多孔结构. 充放电结果指出, Cu6Sn5合金电极具有较好的充放电性能, 其首次放电(嵌锂)和充电(脱锂)容量分别为735和571 mAh·g-1, 并且具有较好的容量保持率. 运用电化学阻抗谱研究了Cu6Sn5合金电极在商业电解液中的界面特性.  相似文献   

7.
以氢气泡为动力学模板电沉积获得多孔铜,并通过热处理增强其结构稳定性.进一步将多孔铜作为基底通过电沉积制备Cu-Sn合金负极.XRD结果给出其组成为Cu6Sn5合金,扫描电子显微镜(SEM)观察到Cu6Sn5合金电极为三维(3D)多孔结构.充放电结果指出,Cu6Sn5合金电极具有较好的充放电性能,其首次放电(嵌锂)和充电(脱锂)容量分别为735和571 mAh·g-1,并且具有较好的容量保持率.运用电化学阻抗谱研究了Cu6Sn5合金电极在商业电解液中的界面特性.  相似文献   

8.
马凯  林宁 《无机化学学报》2020,36(3):415-420
采用熔盐锌热法,以蔗糖为前驱体成功制备了三维多孔碳材料,并将其用作钾离子电池负极材料。所制备的三维多孔碳具有大量相互贯通的孔道,有效地缓解了电极在充放电循环过程中的体积效应,提高了电解液对电极的浸润性,缩短了钾离子的扩散路径,从而展现出优异的循环稳定性和倍率性能。三维多孔碳电极在0.5 A·g-1的电流密度下,经过2500次循环后仍展现174.6 mAh·g-1的比容量,甚至在4.4 A·g-1的高倍率下容量仍保持在170 mAh·g-1。  相似文献   

9.
为了提高碳材料作为锂离子电池负极材料的比容量,将氮掺杂的碳纤维与高容量的Sn进行复合。通过静电纺丝及低温碳化制备了均匀镶嵌Sn纳米颗粒的氮掺杂碳纳米纤维(C-Sn)复合膜。该复合膜直接用作自支撑锂离子电池负极时表现出较好的电化学性能,Sn的引入显著提高了碳纳米纤维膜的电化学性能。碳均匀包覆Sn后形成的纤维结构可以促进离子电子的传导,并能有效缓冲Sn纳米粒子在循环过程中的体积变化,从而有效抑制粉化与团聚。Sn含量约为25.6%的CSn-2电极具有最高的比容量和更优异的倍率性能。电化学测试结果表明,在2A·g-1的电流密度下,充放电循环1000圈后充电(放电)比容量为412.7(413.5)mAh·g-1。密度泛函理论(DFT)计算结果表明,N掺杂非晶碳与锂具有良好的亲和性,有利于将合金化反应之后形成的SnxLiy合金锚定在碳表面,进而缓解了充放电过程中的Sn的体积变化。本文为高性能储锂材料的设计提供了一种切实可行的策略。  相似文献   

10.
褚道葆  李建  袁希梅  李自龙  魏旭  万勇 《化学进展》2012,24(8):1466-1476
发展高安全性、高能量、低成本、长寿命锂离子电池是当前动力电池应用面临的巨大挑战。电池的性能主要取决于正负极电极材料的性能。Sn基合金负极具有高能量和安全特性,是一种很有产业化前景的锂离子电池负极材料。本文综述了Sn基合金电极作为锂离子电池负极的最新研究进展,对Sn基合金负极的不同制备方法进行了总结,重点介绍了锡基合金负极材料在电化学性能方面所存在的问题及其原因,包括锡基活性物质的损失、SEI膜和氧化膜的形成、纳米粒子的团聚和锂离子嵌入过程中死锂的产生等影响合金充放电性能的因素,最后展望了以提高Sn基合金负极电化学性能为目的的研究趋势。  相似文献   

11.
对溶剂化的石墨烯薄膜进行冷冻干燥处理得到改性的石墨烯薄膜,这种处理可以降低干燥过程中石墨烯片层之间严重的再堆叠.结果表明改性的石墨烯薄膜具有更多的折皱和更大的层间距,并提高了电化学性能.在电流密度为50 mA·g-1时,该电池首次循环的放电和充电比容量分别为1189.3和645.2 mAh·g-1,400次循环后充电比容量仍然超过305 mAh·g-1,显著高于使用传统真空过滤得到的石墨烯薄膜的电化学性能.此外,相对于传统的石墨电极(包括活性物质、聚合物粘结剂和导电集流体),石墨烯薄膜电极的质量和成本有明显的下降.  相似文献   

12.
以天然鳞片石墨为原料,采用改良的Hummers方法,制备了高纯度的薄层或单层氧化石墨(GO);并以抗坏血酸为还原剂,通过自组装还原的方式成功制备了具有三维多孔独巨石结构的还原氧化石墨烯(rGO)气凝胶,其形貌和结构经FT-IR, SEM, TEM, XRD和XPS表征。并对其作为锂离子电池负极材料的电化学性能进行了测试。结果表明:rGO气凝胶独特的形貌和结构提高了其比容量和循环性能,在100 mA·g-1电流密度下首周放电比容量可达1 700 mAh·g-1,首周充电比容量达710 mAh·g-1,经过100周循环后放电比容量仍可保持在450 mAh·g-1,库伦效率保持在98%。  相似文献   

13.
褚道葆  李艳  宋奇  周莹 《物理化学学报》2011,27(8):1863-1867
以富含植物蛋白的豆浆作为碳源, 以FePO4·4H2O和LiOH·H2O为原料, 采用流变相方法合成了锂离子电池正极材料LiFePO4/C. X射线衍射(XRD)和扫描电子显微镜(SEM)的表征结果显示, 样品具有良好的结晶性能, 平均粒径约200 nm, 颗粒表面有均匀网络状的碳包覆. 充放电循环研究结果表明: LiFePO4/C具有稳定的电化学循环性能, LiFePO4/C正极材料在0.1C倍率下首次放电比容量达到156 mAh·g-1, 首次充放电效率达到98.7%; 循环40次后, 放电比容量为149 mAh·g-1, 电池容量保持率在95%以上, 1C倍率下首次放电比容量达到134.7 mAh·g-1, 显示出较高的电化学容量和优良的循环稳定性.  相似文献   

14.
以乙酸锰和钛酸四丁酯为原料,柠檬酸为络合剂,采用溶胶-凝胶法制备钛酸锰(MnTiO3)粉体,而后将其粉体高温氨气氮化,可得到MnO/TiN复合材料. 使用X射线衍射(XRD)、X射线能量色散谱(EDS)和场发射扫描电子显微镜(FESEM)表征材料的物相结构与组分、观察其形貌. 采用循环伏安、恒流充放电和电化学阻抗方法测试电极电化学性能. 结果表明,MnO/TiN电极在100 mA?g-1和1 A?g-1倍率放电下,比容量分别为394 mAh?g-1和146 mAh?g-1,均高于单纯MnO电极比容量和倍率性能,这归因于复合材料中的TiN提供了导电网络,并有效地抑制了电极在充放电过程中的体积膨胀效应.  相似文献   

15.
应用球磨法于LiFePO4掺杂多壁碳纳米管,制成LiFePO4/MWCNTs复合电极,然后以其组装成锂离子电池.研究不同比例掺杂多壁碳纳米管对复合材料电极电化学性能的影响.XRD、SEM表征及电化学性能测试表明,多壁碳纳米管含量为10%(bymass)的LiFePO4/MWCNTs电极比其它比例的复合电极具有更优良的充放电性能,而且极化小、稳定性强、充放电平台更平稳,导电率更高.在常温0.1C下充放电,首次充、放电比容量分别为139和128.5mAh.g-1,库仑效率达92.4%,循环40次后,电极比容量损失率仅为5.3%.  相似文献   

16.
以TiOSO4为钛源,多壁碳纳米管(MWNTs)为载体,溶剂热法制备了多壁碳纳米管/二氧化钛纳米复合材料(TiO2@MWNTs),并利用XRD,SEM,TEM,N2吸附-脱附和TG-DSC等测试手段对合成产物的结构和形貌进行表征,用恒流充放电测试研究TiO2@MWNTs纳米复合材料的储锂性能.N2吸附-脱附曲线和孔径分布曲线证实TiO2@MWNTs存在多级孔道结构以及较大的比表面积.电化学测试结果表明,与纯TiO2颗粒相比,TiO2@MWNTs纳米复合材料具有更好的容量保持率和倍率性能.在1 C倍率下,复合材料的可逆容量为200 mAh?g-1,循环100圈后容量仍达182 mAh?g-1,即使在10 C大倍率下,容量约为100 mAh?g-1左右.  相似文献   

17.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

18.
石墨烯掺杂LiFePO4电极材料的合成及其电化学性能   总被引:2,自引:0,他引:2  
采用水热辅助法合成石墨烯改性的LiFePO4多孔微球电极材料.并对材料进行了X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),傅里叶变换红外(FT-IR)光谱,充放电等表征.从结果可以看出在2 mol·L-1LiNO3电解液体系中单纯包碳的LiFePO4微球在1C、50C倍率时的比容量分别为137、64 mAh·g-1,而石墨烯改性的LiFePO4微球的比容量分别为141、105 mAh·g-1,表现出较好的倍率特性.恒流循环充放电测试60次后两种材料容量保持率分别为70.2%、83.7%.说明掺杂石墨烯构成的三维导电网络能明显改善LiFePO4的电化学性能.  相似文献   

19.
以甲基纤维素、壳聚糖及葡萄糖分别作为碳源,应用碳热还原法合成正极Li3V2(PO4)3/C复合材料.XRD、SEM等方法分析、表征材料的结构、形貌和电化学性能.结果表明,碳源的选择对产物的比容量、循环寿命和倍率性能等均有较大的影响.以甲基纤维素为碳源制备的单斜Li3V2(PO4)3正极材料具有较好的电化学性能,在3.0~4.5V,0.2C倍率下,其初始容量为130.6mAh·g-1,30次循环后放电比容量仍可达到108mAh·g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号