首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用TPD和IR方法研究了CH_3NO_2在典型固体酸SiO_2-Al_2O_3和固体碱MgO催化剂上的吸附分解。结果表明,在SiO_2-Al_2O_3表面CH_3NO_2吸附转化为表面甲酰胺物种,后者在高温下分解为CO_2和NH_3。在MgO表面CH_3NO_2吸附形成多种表面化学物种,它们在升温过程中脱附,并通过表面亚硝基甲烷物种分解为NO、C_2H_4、C_2H_6和N_2O.讨论了CH_3NO_2分解过程中表面酸、碱中心的作用。  相似文献   

2.
The adsorption of methanol on pure ZnO and Au‐decorated ZnO nanoparticles and its thermal decomposition monitored by temperature‐programmed desorption (TPD) experiments and by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), both applied under continuous flow conditions in fixed bed reactors, is reported. Two distinguishable methoxy species are formed during methanol adsorption on ZnO differing in the C? O stretching bands. During the subsequent TPD experiments two different H2 peaks are observed, indicating the conversion of methoxy into formate species. By applying different heating rates, activation energies of 109 kJ mol?1 and 127 kJmol?1 for the selective oxidation of the two methoxy species are derived. Correspondingly, the methoxy decomposition results in two distinguishable formate species, which are identified by the asymmetric and symmetric OCO stretching bands on pure ZnO and Au/ZnO. Based on the decreased intensities of the OH bands during methanol adsorption, which are specific for the various ZnO single crystal surfaces, on the different reactivities of these surfaces, and on the formate FTIR bands observed on ZnO single crystal surfaces, the two methoxy and the corresponding formate species are identified to be adsorbed on the exposed less reactive non‐polar ZnO(${10\bar 10}$ ) surface and on the highly reactive polar ZnO(${000\bar 1}$ ) surface. The simultaneous formation of H2, CO, and CO2 at about 550–600 K during the TPD experiments indicate the decomposition of adsorbed formate species. The CO/CO2 ratio decreases with increasing Au loading, and a broad band due to electronic transitions from donor sites to the conduction band is observed in the DRIFT spectra for the Au‐decorated ZnO nanoparticles. Thus, the presence of the Au nanoparticles results in an enhanced reducibility of ZnO facilitating the generation of oxygen vacancies.  相似文献   

3.
徐柏庆  陈兰忠 《分子催化》1992,6(6):454-461
用TPD和IR谱研究了CH_3NO_2在ZrO_2催化剂上的吸附活化和分解反应。结果表明,室温下CH_3NO_2在ZrO_2表面发生不可逆化学吸附,它们在TPD过程中可完全分解生成HCN、CO_2、CO、NH_3、H_2O和微量NO。其中H_2O和NO的脱附峰出现在383K附近。其它产物在543K附近出现极大值。IR结果表明,CH_3NO_2在ZrO_2上吸附形成诸如[CH_2NO_2],和/或吸附物种。这些吸附物种在升高温度时转化为表面态“HCN”。“HCN”或脱附,或进一步向表面“HCONH_2”和/或“HCOO~-”转化,后两种表面物种分解可产生CO_2、NH_3和CO。将这些结果与CH_3NO_2在SiO_2-Al_O_3和MgO催化剂上的结果进行了比较,讨论了酸-碱双功能性ZrO_2催化剂上CH_3NO_2活化分解的特点。  相似文献   

4.
Interaction of N2O at low temperatures (473-603 K) with Fe-ZSM-5 zeolites (Fe, 0.01-2.1 wt %) activated by steaming and/or thermal treatment in He at 1323 K was studied by the transient response method and temperature-programmed desorption (TPD). Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) of NO adsorbed at room temperature as a probe molecule indicated heterogeneity of surface Fe(II) sites. The most intensive bands were found at 1878 and 1891 cm(-1), characteristic of two types mononitrosyl species assigned to Fe2+(NO) involved in bi- and oligonuclear species. Fast loading of atomic oxygen from N2O on the surface and slower formation of adsorbed NO species were observed. The initial rate of adsorbed NO formation was linearly dependent on the concentration of active Fe sites assigned to bi- and oligonuclear species, evolving oxygen in the TPD at around 630-670 K. The maximal coverage of a zeolite surface by NO was estimated from the TPD of NO at approximately 700 K. This allowed the simulation of the dynamics of the adsorbed NO formation at 523 K, which was consistent with the experiments. The adsorbed NO facilitated the atomic oxygen recombination/desorption, the rate determining step during N2O decomposition to O2 and N2, taking place at temperatures > or =563 K.  相似文献   

5.
CuO-ZnO-ZrO2催化甲醇水蒸汽重整反应机理和中间态   总被引:1,自引:0,他引:1  
应用质谱在线技术,对CuO-ZnO-ZrO2催化甲醇水蒸汽重整(SRM)反应进行程序升温脱附(TPD)和程序升温表面反应(TPSR)研究.结果表明:在反应态催化剂表面,甲醇以分子吸附态形式存在,甲醇水蒸汽重整反应经历甲酸根中间物种.分别用CuO、CuO-ZnO、CuO-ZnO-ZrO2作催化剂,甲醇在气流中的摩尔分数分别高于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO2和H2;而甲醇在气流中的摩尔分数分别低于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO、CO2和H2.  相似文献   

6.
众多的研究表明甲酸在氧化物催化剂上的吸附分解与催化剂的表面酸碱性质有关。研究吸附相甲酸物种的变化表明甲酸分解反应的选择性除受温度影响外,还与甲酸的表面覆盖度有关。Z_rO_2表现为较典型的弱酸弱碱双功能性催化剂。最近我们的研究表明Z_rO_2表面存在表面键诱导酸-碱相互作用,它的酸-碱双功能催化作用在烷基胺分解转化为腈的反应中得到了较好地体现。本文报导Z_rO_2催化剂上吸附甲酸的程序升温脱附(TPD)和红外光谱(IR)研究结果。  相似文献   

7.
应用质谱在线技术,对CuO-ZnO-ZrO2催化甲醇水蒸汽重整(SRM)反应进行程序升温脱附(TPD)和程序升温表面反应(TPSR)研究.结果表明:在反应态催化剂表面,甲醇以分子吸附态形式存在,甲醇水蒸汽重整反应经历甲酸根中间物种.分别用CuO、CuO-ZnO、CuO-ZnO-ZrO2作催化剂,甲醇在气流中的摩尔分数分别高于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO2和H2;而甲醇在气流中的摩尔分数分别低于5.4%、0.37%和0.17%时,甲酸根中间态的分解产物为CO、CO2和H2.  相似文献   

8.
The mechanism of CN bond formation from CH3 and NH3 fragments adsorbed on Pt(111) was investigated with reflection absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). The surface chemistry of carbon-nitrogen coupling is of fundamental importance to catalytic processes such as the industrial-scale synthesis of HCN from CH4 and NH3 over Pt. Since neither CH4 nor NH3 thermally dissociate on Pt(111) under ultrahigh vacuum (UHV) conditions, the relevant surface intermediates were generated through the thermal decomposition of CH3I and the electron-induced dissociation of NH3. The presence of surface CN is detected with TPD through HCN desorption as well as with RAIRS through the appearance of the vibrational features characteristic of the aminocarbyne (CNH2) species, which is formed upon hydrogenation of surface CN at 300 K. The RAIRS results show that HCN desorption at approximately 500 K is kinetically limited by the formation of the CN bond at this temperature. High coverages of Cads suppress CN formation, but the results are not influenced by the coadsorbed I atoms. Cyanide formation is also observed from the reaction of adsorbed N atoms and carbon produced from the dissociation of ethylene.  相似文献   

9.
The adsorption of methanol on γ-irradiated and un-irradiated SiO2 surfaces pretreated at 473 K was investigated by Fourier transform infrared spectroscopy, temperature programmed desorption (TPD) and pulse methods. Methanol adsorbed only in molecular form on the un-irradiated sample. Treating the pre-irradiated silica surface with methanol at room temperature formaldehyde and hydrogen were formed. The methanol adsorbed on the irradiated silica transformed to formyl groups during a longer time at room temperature and desorbed as formaldehyde simultaneously with CH3OH (Tmax=395 K) on the TPD.  相似文献   

10.
The adsorption and reaction of methanol (CH(3)OH) on stoichiometric (TiO(2)-terminated) and reduced SrTiO(3)(100) surfaces have been investigated using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and first-principles density-functional calculations. Methanol adsorbs mostly nondissociatively on the stoichiometric SrTiO(3)(100) surface that contains predominately Ti(4+) cations. Desorption of a monolayer methanol from the stoichiometric surface is observed at approximately 250 K, whereas desorption of a multilayer methanol is found to occur at approximately 140 K. Theoretical calculations predict weak adsorption of methanol on TiO(2)-terminated SrTiO(3)(100) surfaces, in agreement with the experimental results. However, the reduced SrTiO(3)(100) surface containing Ti(3+) cations exhibits higher reactivity toward adsorbed methanol, and H(2), CH(4), and CO are the major decomposition products. The surface defects on the reduced SrTiO(3)(100) surface are partially reoxidized upon saturation exposure of CH(3)OH onto this surface at 300 K.  相似文献   

11.
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the adsorption of methanol (CH(3)OH) on the highly oriented pyrolytic graphite (HOPG) surface. RAIRS shows that CH(3)OH is physisorbed at all exposures and that crystalline CH(3)OH can be formed, provided that the surface temperature and coverage are high enough. It is not possible to distinguish CH(3)OH that is closely associated with the HOPG surface from CH(3)OH adsorbed in multilayers using RAIRS. In contrast, TPD data show three peaks for the desorption of CH(3)OH. Initial adsorption leads to the observation of a peak assigned to the desorption of a monolayer. Subsequent adsorption leads to the formation of multilayers on the surface and two TPD peaks are observed which can be assigned to the desorption of multilayer CH(3)OH. The first of these shows a fractional order desorption, assigned to the presence of hydrogen bonding in the overlayer. The higher temperature multilayer desorption peak is only observed following very high exposures of CH(3)OH to the surface and can be assigned to the desorption of crystalline CH(3)OH.  相似文献   

12.
The adsorption and thermal decomposition of ketene on Si(l 11)-7 × 7 were investigated using various surface analysis techniques. When the surface was exposed to ketene at 120 K, two CO stretching modes at 220 and 273 meV appeared in HREELS, corresponding to two adsorbed ketene states. After the sample was annealed at ?250 K, the 273 and the 80 meV peaks vanished, indicating the disappearance of one of the adsorption states by partial desorption of the adsorbate. In a corresponding TPD measurement, a desorption peak for ketene species was noted at 220 K. Annealing the sample at 450 K caused the decomposition of the adsorbate, producing CHx and O adspecies. Further annealing of the surface at higher temperatures resulted in the breaking of the CH bond, the desorption of H and O species and the formation of Si carbide. The desorption of H at 800 K was confirmed by the appearance of the D2 (m/e = 4) TPD peak at that temperature when CD2CO was used instead of CH2CO.  相似文献   

13.
林丹  赵会民  张小月  蓝冬雪  淳远 《催化学报》2012,33(6):1041-1047
将碱金属碳酸盐修饰的KX和NaY沸石用于催化甲苯甲醇侧链烷基化反应,并结合甲醇吸附的红外光谱以及异丙醇和甲醇催化分解反应结果,剖析了甲酸盐的形成及其作用.结果表明,碱金属碳酸盐的负载能提高碱金属离子交换八面沸石的催化活性.在反应过程中催化剂表面形成了不同数量的甲酸盐,尤其是K2CO3修饰的KX上;甲酸盐主要来源于碳酸盐与甲醇分解产物甲醛的反应,它的形成对催化剂甲苯甲醇侧链烷基化活性的影响较大,类似于碱金属硼酸盐的修饰,改善了催化剂的表面酸碱性,形成了更为有效的活性中心.  相似文献   

14.
Adsorption of ethylene oxide, CH(2)CH(2)O (EtO), on a Au(211) stepped surface was studied by temperature programmed desorption (TPD) and Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS). Ethylene oxide was completely reversibly adsorbed, and desorbed molecularly during TPD following adsorption on Au(211) at 85 K. EtO TPD peaks appeared at 115 K from the multilayer film and 140 and 170 K from the monolayer. Desorption at 140 K was attributed to EtO desorption from terrace sites, and that at 170 K to EtO desorption from step sites. Desorption activation energies and corresponding adsorption energies were estimated to be 8.4 and 10.3 kcal mol(-1), respectively. The EtO ring (C(2)O) deformation band appeared in IRAS at 865 cm(-1) for EtO in multilayer films and when adsorbed in the monolayer at terrace sites. The stronger chemisorption bonding of EtO at Au step sites slightly weakens the bonding within the molecule and causes a small red-shift of this band to 850 cm(-1) for adsorption at step sites. EtO presumably binds via the oxygen atom to the surface, and observation of the EtO-ring absorption band in IRAS establishes that the molecular ring plane of EtO adsorbed at step and terrace sites is nearly upright with respect to the crystal surface plane.  相似文献   

15.
The industrially important interaction of methanol with an eta-alumina catalyst has been investigated by a combination of infrared spectroscopy (diffuse reflectance and transmission) and inelastic neutron scattering (INS) spectroscopy. The infrared and INS spectra together show that chemisorbed methoxy is the only surface species present. Confirmation of the assignments was provided by a periodic DFT calculation of methoxy on eta-alumina (110). The thermal conversion of adsorbed methoxy groups to form dimethylether was also followed by INS, with DFT calculations assisting assignments. An intense feature about 2600 cm(-1) was observed in the diffuse reflectance spectrum. This band is poorly described in the extensive literature on the alumina/methanol adsorption system and its observation raised the possibility of a new surface species existing on this particular catalyst surface. INS measurements established that the 2600 cm(-1) feature could be assigned to a combination band of the methyl rock with the methyl deformation modes. This assignment was reinforced by an analysis of the neutron scattering intensity at a particular energy as a function of momentum transfer, which confirmed this particular adsorbed methoxy feature to arise from a second order transition. Similar behaviour was observed in the model compound Al(OCH3)3. The anomalous infrared intensity of the 2600 cm(-1) peak in the diffuse reflectance spectrum is a consequence of the different absorption coefficients of the C-H stretch and the combination mode. The implications for catalyst studies are discussed.  相似文献   

16.
Structural effects on intermediate species of methanol oxidation are studied on low-index planes of platinum using in-situ infrared (IR) spectroscopy. A flow cell is designed for rapid migration of reactant and product species on the electrode surface. IR spectra show adsorption of formate and the formation of carbonate species on the Pt(111) surface at potentials higher than that of CO oxidation. The band assignments for carbonate and formate are confirmed by vibrational isotope shifts. On Pt(100), the absorption band of adsorbed formate is much smaller than that on Pt(111). On the other hand, there is no adsorbed formate on Pt(110) in the potential region examined. The band intensity of formate follows the order: Pt(111)>Pt(100)>Pt(110). This order is opposite to that of the current density in the regions of higher potential. Adsorbed formate on Pt(111) behaves like a catalyst-poisoning intermediate, like adsorbed CO.  相似文献   

17.
Adsorption and reactions of NO on clean and CO-precovered Ir(111) were investigated by means of X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HR-EELS), infrared reflection absorption spectroscopy (IRAS), and temperature-programmed desorption (TPD). Two NO adsorption states, indicative of fcc-hollow sites and atop sites, were present on the Ir(111) surface at saturation coverage. NO adsorbed on hollow sites dissociated to Na and Oa at temperatures above 283 K. The dissociated Na desorbed to form N2 by recombination of Na at 574 K and by a disproportionation reaction between atop-NO and Na at 471 K. Preadsorbed CO inhibited the adsorption of NO on atop sites, whereas adsorption on hollow sites was not affected by the coexistence of CO. The adsorbed CO reacted with dissociated Oa and desorbed as CO2 at 574 K.  相似文献   

18.
The surface reactions of dimethyl ether (DME) on industrial alumina (γ-Al2O3) were studied by chromatographic analysis of the products at the outlet of the flow reactor and (independently) by diffuse reflectance IR spectroscopy. The major products of the reactions at 250°С were found to be methanol formed in the reaction of DME with hydroxyl groups (the 3720 and 3674 cm–1 bands in the diffuse reflectance spectrum) and various methoxy groups (the 1121, 1070, 695, and 670 cm–1 bands in the differential spectra). The presence of molecularly adsorbed methanol was confirmed by experiments with methanol fed in a high-temperature IR cell. The interaction of the resulting methanol molecule with the hydroxyl group led to the formation of a water molecule in the gas phase and a methoxy group on the oxide surface. Strong adsorption of molecular DME was revealed, which was favored by an increase in the temperature of the preliminary calcination of oxide from 250 to 450–500°С; treatment of alumina with water vapor after its preliminary contact with DME led to a recovery of the hydroxyl coating and a replacement of molecularly adsorbed DME with hydroxyl. The thermal effect recorded in a flow reactor was positive during the adsorption of DME and negative during the desorption of weakly bonded DME. Schemes of formation of methoxy groups in the interaction of DME and methanol with surface hydroxyls were suggested.  相似文献   

19.
Reflection absorption infrared spectroscopy (RAIRS) and temperature programed desorption (TPD) have been used to probe the adsorption and desorption of ethanol on highly ordered pyrolytic graphite (HOPG) at 98 K. RAIR spectra for ethanol show that it forms physisorbed multilayers on the surface at 98 K. Annealing multilayer ethanol ices (exposures >50 L) beyond 120 K gives rise to a change in morphology before crystallization within the ice occurs. TPD shows that ethanol adsorbs and desorbs molecularly on the HOPG surface and shows four different species in desorption. At low coverage, desorption of monolayer ethanol is observed and is described by first-order kinetics. With increasing coverage, a second TPD peak is observed at a lower temperature, which is assigned to an ethanol bilayer. When the coverage is further increased, a second multilayer, less strongly bound to the underlying ethanol ice film, is observed. This peak dominates the TPD spectra with increasing coverage and is characterized by fractional-order kinetics and a desorption energy of 56.3+/-1.7 kJ mol(-1). At exposures exceeding 50 L, formation of crystalline ethanol is also observed as a high temperature shoulder on the TPD spectrum at 160 K.  相似文献   

20.
通过原位红外漫反射实验比较研究了甲醇在Cu及ZrO2/Cu催化剂表面的吸附与反应,并且采用不同还原温度来处理催化剂,改变催化剂表面的氧含量,并进一步研究甲醇吸附和反应性能随着催化剂表面氧含量的变化规律.结果表明,甲醇在Cu催化剂表面反应生成吸附态甲醛物种,进一步生成CO2,而在ZrO2/Cu表面形成甲酸盐物种,并与表面氧进一步反应生成CO2.随着催化剂还原温度的升高,反应中间物进一步生成CO2的反应速率变慢,说明催化剂表面的氧物种含量决定着催化剂甲醇吸附中间物种的形成及反应速率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号