首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用HREELS技术对甲醇在预吸附氯的Ag(111)表面上的吸附氧化行为进行了较细致的研究.结果证明Cl对甲醇氧化的影响缘于它在Ag(111)上的吸附所引起的表面结构的改变进而改变表面氧吸附物种,从而使得甲醇氧化的中间产物发生变化.实验结果说明甲醇在Ag(111)和低暴露量氯吸附的Ag(111)表面上的氧化行为是相似的,检测到了中间产物Ⅰ和Ⅲ;在高暴露量氯吸附的Ag(111)上甲醇氧化时则产生中间产物Ⅰ、Ⅳ和甲醛物种.对上述不同的甲醇氧化行为作了分析,并指出了以前人们在考察甲醇氧化机理时只考虑原子氧作用的片面性.  相似文献   

2.
利用热脱附(TPD)实验和X射线光电子能谱(XPS)研究了碘乙醇在Ni(100)表面的吸附和热反应过程. 实验结果表明碘乙醇在100 K时以两种分子的形式吸附在Ni(100)的表面, 即: 以碘原子端吸附在表面或以碘原子端和羟基端同时吸附在表面. 由于两种吸附形式的分子的一致分解和吸附分子的不均匀性, 在140 K引起了较复杂的化学反应, 伴有少量的乙烯和水产生. 碘乙醇在150 K经过C—I键断裂, 有80%碘乙醇生成—O(H)CH2CH2—中间产物, 20%的碘乙醇生成羟乙基中间产物. 羟乙基在160 K的转化过程中包括两个互相竞争的化学反应: 与表面的氢原子进行还原反应生成乙醇, 或失去一个β-H原子生成表面乙烯醇. 另外, 在相同的温度下—O(H)CH2CH2—中间产物经过脱氢反应产生—OCH2CH2—氧金属环. 羟乙基和氧金属环都会发生异构, 分别在210 K和250 K生成乙醛, 这些乙醛一部分从表面脱出, 其余的部分发生分解反应产生氢气、水和一氧化碳. 在实验基础上, 进一步探讨了这种化学过程在催化中的作用和指导意义.  相似文献   

3.
考察了Ag(111)表面和吸氯的Ag(111)表面上氧的吸附行为.结果表明在Ag(111)及低暴露量氯吸附的Ag(111)上氧吸附时,表面上均存在弱的分子氧和原子氧物种.但在高暴露量氯吸附的Ag(111)表面上氧吸附时则选择性地只产生表面分子氧物种,这种选择性只与氯的吸附程度有关,而与氯的存在与否无关.结合以前的实验结果,对氯吸附至(c)阶段时的Ag(111)表面上氧的选择性吸附行为的本质作了详细讨论.  相似文献   

4.
 利用程序升温反应谱、X射线光电子能谱和高分辨电子能量损失谱研究了NO在清洁和预吸附氧的Pt(110)表面的吸附和分解. 在清洁的Pt(110)表面,室温下低覆盖度时NO以桥式吸附为主,高覆盖度时NO以线式吸附为主. 加热过程中部分NO(主要是桥式吸附物种)分解,生成N2和N2O. 室温下O2在Pt(110)表面发生解离吸附. Pt(110)表面预吸附氧会抑制桥式吸附NO的生成,并导致其脱附温度降低40 K. 降低脱附温度有利于桥式吸附NO的分子脱附,从而抑制分解反应. 这些结果从表面化学的角度合理地解释了铂催化剂在富氧条件下对NO分解能力的降低.  相似文献   

5.
用高分辨电子能量损失谱(HREELS)研究了甲酸在轻微氧化的Nb(110)表面(O/Nb原子比=0.2)上的吸附与分解,提出了相应的表面反应模式.140K时,低暴露量的甲酸在该表面解离生成甲酸根(HCOO),生成的甲酸根以单齿形式键合在Nb上,同时也有少量甲酸分解生成吸附态的CO;高暴露量时则生成多层物理吸附的固体甲酸.升温至~190K,物理吸附的甲酸脱附,此时的表面为单齿键合的HCOO和CO所覆盖.温度升至250~300K时,HCOO的吸附态由单齿式转变成桥式,同时表面吸附的CO分子消失.升温过程的HREELS表明HCOO的分解导致了Nb的氧化.暴露量较高时表面的甲酸根比较稳定以致于在540K的高温时仍不完全分解.  相似文献   

6.
利用热脱附(TPD)实验和X射线光电子能谱(XPS)研究了碘乙醇在Ni(100)表面的吸附和热反应过程. 实验结果表明, 碘乙醇在100 K温度下以两种分子的形式吸附在Ni(100)的表面, 既有碘原子端的吸附也有碘原子端和羟基端同时吸附在表面. 热分解反应发生在140 K, 伴有少量的乙烯和水产生. 碘乙醇在150 K经过C—I键断裂形成−O(H)CH2CH2−和羟乙基两种中间产物. 在160 K温度下−O(H)CH2CH2−脱去氢形成−OCH2CH2−氧金属环. 中间产物经过进一步分解氧化反应分别在210和250 K产生乙醛, 一部分乙醛从表面脱出, 而其余的则分解成氢气、水和CO.  相似文献   

7.
 首次采用原位共焦显微激光拉曼光谱研究了经纯氧预处理后电解银表面吸附的不同氧物种在升温过程中相互转化的情况. 结果发现,当温度低于423 K时, Ag-O2物种缓慢转化为超氧物种 Ag[O-O]-; 温度升高至423 K时, Ag[O-O]-物种将随着时间的延长转化为 Ag-O(α) 物种; 继续升高温度, Ag-O(α) 物种首先转化为 Ag-O-O-Ag 物种,再进一步转化为电解银表面最稳定的 Ag-O(γ) 次表层氧物种并保持至973 K以上. 结合实际反应体系,低温下电解银表面吸附的氧物种主要是分子氧,在类似乙烯环氧化反应的条件下这些分子氧将转化成 Ag-O(α) 物种,而在类似甲醇选择氧化制甲醛的反应条件下又转化为在高温下较稳定的 Ag-O(γ) 物种,根据具体的转化细节推测了可能的机理.  相似文献   

8.
本文用ESCA法研究了羧酸与清洁及预氧化的Zn(0001)、Bi(0001)和多晶Mn表面的反应.80 K时乙酸分子吸附于清洁的Zn(0001)表面,150K即完全脱附,不发生任何化学反应;乙酸与Zn (0001)-O表面80 K便发生反应,生成乙酸基和水,此表面水于136 K脱附.甲酸分子80 K吸附在清洁Bi(0001)表面,140 K便大部脱附;在Bi(0001)-O表面甲酸80 K便分解为表面甲酸根和水,表面水于170 K脱附,甲酸根则在428 K分解脱附.清洁的多晶Mn表面有强的亲氧性,室温下甲(乙)酸在其表面分解吸附,吸附物种为晶格氧O~(2-)、甲(乙)酸根、CH_x(C_2H_x)和已经形成了碳化锰的表面碳C_(α)~(δ-).650K(550 K)时甲(乙)酸根完全分解,Mn表面仅存O~(2-)和C~(δ-).甲(乙)酸室温下以甲(乙)酸根吸附于Mn-O表面,加热可使表面甲酸根分解.  相似文献   

9.
乙烯在Ru(1010)表面价带电子特性研究   总被引:1,自引:0,他引:1  
在200K以下乙烯(C2H4)可以在Ru(1010)表面上以分子状态稳定吸附,200K以上乙烯发生了脱氢分解反应生成乙炔(C2H2).乙烯分解生成乙炔后,σCC和σCH分子轨道能级向高结合能方向分别移动了0.5和1.1 eV.偏振角分辨紫外光电子谱(ARUPS)结果表明:在Ru(1010)表面上,乙烯和脱氢反应后生成的乙炔分子的C-C键轴都不平行于表面,而是沿表面(0001)晶向倾斜.  相似文献   

10.
EHMO研究乙烯氧化反应的银-金合金催化剂   总被引:1,自引:0,他引:1  
文献上关于乙烯被银催化氧化的机理研究结果表明,乙烯与被吸附的分子氧作用生成环氧乙烷,而与解离的原子氧作用生成二氧化碳和水. 在一种纯金属中加入其它金属形成合金时,将改变原金属的电子结构和几何构型。而对金属催化剂来说,其电子结构和几何构型的变化,将影响其吸附和吸附时形成的  相似文献   

11.
二氧化钛薄膜上三氯乙烯光催化氧化反应机理   总被引:3,自引:0,他引:3  
 研究了二氧化钛薄膜上三氯乙烯(TCE)气相光催化氧化的反应机理. 结果表明,TCE气相光催化氧化反应生成的氯气可引发TCE的连锁反应. 当添加氯气的浓度相同时TCE表面光催化反应的初速率约为光化学反应初速率的2倍,说明连锁反应主要发生在催化剂表面. 氯可吸附在催化剂表面,作为电子的接受体抑制空穴与电子复合,提高TiO2光催化剂的活性. 除了TCE与吸附在催化剂表面的·OH的相互作用及反应产物/中间产物二氯乙酰氯的光催化分解可生成氯气以外,光气在与氯气共存时的光分解也有利于氯的生成.  相似文献   

12.
Ni/Al2O3催化剂表面状态对CH4氧化反应的影响   总被引:3,自引:1,他引:2  
采用瞬变响应技术研究了常压700℃条件下气相O2、Ni/Al2O3催化剂表面上可逆吸附氧物种及催化剂的表面状态对CH4吸附、反应以及CH4部分氧化反应的影响,同时也对CH4部分氧化制合成气反应过程中催化剂表面所处的状态进行了研究.结果表明,如果催化剂表面处于氧化态,CH4不能吸附分解,只能通过RidealEley机理与催化剂表面的吸附氧进行非选择性氧化反应,这将严重影响CH4的转化和目的产物H2、CO的选择性.只有在还原的催化剂上,CH4部分氧化制合成气反应才能高转化、高选择性地进行.在CH4部分氧化制合成气反应过程中,催化剂表面处于还原态,不存在多余的中间氧物种NiO,但存在少量的碳物种,这有利于保持催化剂的还原态和抑制CO2的生成.  相似文献   

13.
用化学吸附-IR,化学吸附-TPD和微反技术研究了超细Fe-Al-P-O催化剂的化学吸附性能及对乙烷部分氧化反应的催化性能.结果表明,乙烷能够以-CH3中的H原子吸附于催化剂表面P=O键的端氧上形成分子吸附态,并且随着吸附温度的升高,对乙烷的吸附强度逐渐增大;乙烯则主要是以C=C双键吸附在催化剂的Lewis酸位:Fe3 上.乙烷部分氧化反应的主要产物为乙烯和COx,但在反应物中引入氢的条件下,乙烷部分氧化反应的性能大为改善,并可生成乙醇和乙醛等含氧化合物.  相似文献   

14.
本文采用TPR、TPO技术分别考察了氧处理Pt/TiO_2上氧物种的还原行为和氢还原样品的氧化过程.TPR结果表明,表面含有活泼氧物种的Pt/TiO_2样品对氢很活泼,室温条件下可以吸附大量氢,并且这些吸附氢又可以在TPR过程中脱附.表面活泼氧物种与氢的反应温度在500—673K之间,当大于673K时,Pt/TiO_2继续耗氢,可能是氢与还原产生的表面Ti~(3+)离子进一步反应生成钛—氢物种,并向TiO_2体相扩散与TiO_2体相晶格氧发生反应.对于773K还原的Pt/TiO_2作品,室温吸附氧在TPD过程中可以与表面吸附氢反应;473K氧化处理可以消除表面的吸附氢,但并不能完全去除体相储氢;573K氧化处理则基本上恢复了原样品的氧化状态.不同温度氢还原处理的Pt/TiO_2样品在动态氧化过程(TPO)中,在300-600K温区,气相氧与样品上表面吸附氢和表面氧空位反应;在大于600K温区,氧主要与表面钛—氢物种发生反应,并向体相扩散,与体相氢发生反应.文中描述了气相氢、氧分别与Pt/TiO_2催化剂存在的氧或氢物种作用的形式.  相似文献   

15.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

16.
包信和  邓景发 《催化学报》1986,7(3):256-263
# 用程序升温反应谱(TPRS)研究了甲醇在电解银工业催化剂表面上的氧化反应。结果表明:除少量H_2O和微量CO_3外,纯净的银表面不吸附CH_3OH,D_2等气体,当银表面预吸附氧后,显著增强了上述气体的吸附和反应。在程序升温过程中,甲醇与预吸附的氧发生表面反应,分别在温度400,500和630K时给出三组分开的产物群。由产物的峰形、峰温和动力学参数得出:第一、第三组产物群的控速步骤是两个不同的表面反应;第二组产物群的控速步骤为反应产物的表面脱附。  相似文献   

17.
 用化学吸附-IR,化学吸附-TPD和微反技术研究了超细Fe-Al-P-O催化剂的化学吸附性能及对乙烷部分氧化反应的催化性能.结果表明,乙烷能够以-CH3中的H原子吸附于催化剂表面P=O键的端氧上形成分子吸附态,并且随着吸附温度的升高,对乙烷的吸附强度逐渐增大;乙烯则主要是以C=C双键吸附在催化剂的Lewis酸位Fe3+上.乙烷部分氧化反应的主要产物为乙烯和COx,但在反应物中引入氢的条件下,乙烷部分氧化反应的性能大为改善,并可生成乙醇和乙醛等含氧化合物.  相似文献   

18.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附.TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的脱附温度在170 K.XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 e V.利用多层NO_2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997).TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+OH(a)=H_2O+HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO_2分子(2HCOO(a)=CO_2+HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中,Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+O(a)=H_2O+CO_2)和歧化反应(2HCOO(a)=CO_2+HCOOH)生成气相CO_2,H_2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+OH(a)=H_2O+HCOO(a))和216 K的羟基并和反应(OH(a)+OH(a)=H_2O+O(a)).  相似文献   

19.
李基涛 《分子催化》1992,6(2):113-119
在乙烯环氧化的原料气中添加微量的1,2-二氯乙烷能较大地提高乙烯环氧化的选择性。1,2-二氯乙烷在反应条件下能分解出氯,并以强、弱两种吸附态存在于催化剂的表面上。它们一方面抑制催化剂表面起深度氧化作用的氧原子的吸附强度和浓度,一方面又排斥反应生成的环氧乙烷,使它更快地脱附,从而减少环氧乙烷异构化的机会,提高乙烯环氧化的选择性。同时吸附在催化剂表面上的氯又与乙烯反应生成1,2-二氯乙烷。这样有机氯化物在催化剂表面上的分解消耗和反应生成达成平衡,以维持催化反应的持续进行。  相似文献   

20.
本文用原子簇模型(CM)的从头计算方法, 计算了银表面甲醇氧化反应中的静态吸附物种的优化几何构型及吸附性质。计算表明在清洁银表面甲醇、甲醛只存在物理吸附; 当表面存在吸附氧原子时, 甲醇可在银表面形成两种分子态吸附;甲醛与表面羟基OH(a)或氢原子H(a)共存时在银表面能够形成化学吸附, 且CH2O(a)极易与O(a)反应生成深度氧化中间体η^2-甲二氧基; 中间产物甲氧基在无氧的银表面能够形成稳定吸附, 在富氧银表面极易进一步氧化脱氢生成产物甲醛。通过计算与实验结果的对照, 我们对反应机理作了初步讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号