首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guided-modes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present FD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.  相似文献   

2.
We consider two cavities which are spatially separated and connected by an optical fibre. There are multi two-level atoms in each of the cavities. The atoms resonantly interact with the cavity fields but there is no direct interaction between the atoms. We show that perfect swap and entangling quantum gates can be realised between the two atoms clusters if modes of the electromagnetic field in the cavities and fibre are initially not excited. Compared with the single atom scheme, we find that the multi-atom scheme can speed up the quantum gates by a factor √N where N is number of the atoms in each of the cavities. We also consider the case where two two-level atoms in distant cavities that are coupled by an optical fibre. We find if both of the atoms interact resonantly with the fields, a highly reliable CNOT gate can be achieved within much less operation time than that of the non- resonant case. The sensibility of these gates to various parameters contained in the models under consideration is also investigated.  相似文献   

3.
We report a spatially modulated polarimetry scheme by using a zero-order vortex half-wave retarder(ZVHR)and a spatial Fourier analysis method.A ZVHR is employed to analyze the input polarized light and convert it into a vectorial optical field,and an analyzer is set after the ZVHR to form an hourglass intensity pattern due to the spatial polarization modulation.Then,the input light’s Stokes parameters can be calculated by spatial Fourier analysis of the hourglass pattern with a single shot.The working principle of the polarimeter has been analyzed by the Stokes-Mueller formalism,and some quantitative measuring experiments of different polarization states have been demonstrated.The experimental results indicate that the proposed polarimeter is accurate,robust,and simple to use.  相似文献   

4.
The velvet electron emission characteristics and beams' brightness are investigated with a multi-pulsed mode. The results indicate that in the multi-pulsed mode the velvet emission is not uniform and the periphery emission is much stronger than that from the centre. The periphery emission contributes much more to the formation of the cathode plasma than the centre emission, which leads to diode impendence breakdown. The relationship between the cathode plasma expansion and the initial emittance of the cathode is deduced to describe the characteristics of the multi-pulsed vacuum diode. The emittance of the multi-pulsed beams is measured to be less than 1000mm·mrad. The brightness of the electron beams is better than 1× 10^8A/(m·rad)2.  相似文献   

5.
张扬  丁宁 《中国物理 B》2008,17(8):2994-3002
Within the magnetohydrodynamics (MHD) frame, we analyse the effect of viscosity on magneto-Rayleigh Taylor (MRT) instability in a Z-pinch configuration by using an exact method and an approximate method separately. It is demonstrated that the plasma viscosity indeed has a stabilization effect on the MRT mode in the whole wavenumber region, and its influence increases with the perturbation wavenumber increasing. After the characteristics and feasibility of the approximate method have been investigated, we apply it to the stability analysis of viscous plasma where a sheared axial flow (SAF) is involved, and we attain an analytical dispersion relation. It is suggested that the viscosity and the SAF are complemental with each other, and a wide wavenumber range of perturbation is possible to be restrained if the SAF and the viscosity are large enough. Finally, we calculate the possible value of viscosity parameter according to the current experimental conditions, and the results show that since the value of viscosity is much less than the threshold value, its mitigation effect is small enough to be neglected. The role of the viscosity in the stabilization becomes considerable only if special techniques are so developed that the Z-pinch plasma viscosity can be increased greatly.  相似文献   

6.
雷鸣  巩马理  柳强  张海涛  王云祥 《中国物理》2007,16(12):3710-3718
We present a novel four-mirror cavity with two active gains to combine power intracavity and also give a detailed theoretical analysis of the combined gain. By using the effective field method, the four-mirror cavity with two gain media can be regarded as a linear resonator with one effective combined gain (ECG), and we procure a theoretical model of the ECG and deduce its exact analytical expression. When the two branch gains are close to each other, the combined gain can be reduced to their product, and the simplified presentation of ECG has been demonstrated. The combined output power which directly reflects the small signal ECG of the four-mirror cavity is studied experimentally, and the results are in good agreement with the theoretical ones.  相似文献   

7.
Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density(PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method(PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform,the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman–Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty,and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.  相似文献   

8.
We propose a general correction method for the efficiency measurement of optical components in the 45-110 nm range to eliminate the contamination of higher-order harmonics at beamline U27 of the Hefei Light Source (HLS). The influence of harmonics can be deducted effiectively from the initial measurement results through the analysis of the proportion of harmonics with a transmission grating and the efficiency measurement of optical elements at the harmonics wavelengths. The reflectivity measurement of a gold film is performed at the beamline to verify its validity. Results indicate that the corrected reflectivity is in good agreement with the theoretical value. The maximal deviation amounts to 1.93% at a wavelength of 85 nm and an incident angle of 5°.  相似文献   

9.
Cold atoms and, more recently, Bose-Einstein condensates (BEC's) in optical lattices have attracted increasing interest since their first realization. In particular, the formal similarity between the wavefunction of a BEC inside the periodic potential of an optical lattice and of the electrons in a crystal lattice has triggered theoretical and experimental efforts alike. Many phenomena from condensed matter physics, such as Bloch oscillations and Landau-Zener tunneling have been shown to be observable also in optical lattices. An important difference between electrons in a crystal lattice and a BEC inside the periodic potential of an optical lattice is the strength of the self interaction and hence the magnitude of the nonlinearity of the system. Electrons in a metal are almost noninteracting, whereas atoms inside a BEC interact strongly. A' perturbation approach is appropriate in the former case while in the latter the full nonlinearity must be taken into account. From this feature new physics is expected. Most experiments to date have been carried out in the regime of shallow lattice depth, for which the system is well described by the mean field Gross-Pitaevskii equation with a periodic potential. Moreover, the nonlinearity induced by the mean-field of the condensate has been shown, both theoretically and experimentally, to give rise to instabilities in certain regions of the Brillouin zone. These instabilities are not present in the corresponding linear system, i.e. the electron system. Experimental and theoretical results on the subject of nonlinear Landau-Zener tunneling and nonlinearity-induced instabilities in a Bose-Einstein condensate interacting with an external periodic potential will be presented.  相似文献   

10.
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.  相似文献   

11.
In this paper, four optical filter topologies based on metal–insulator–metal waveguides are proposed and the designed structures are investigated numerically using finite-difference timedomain method. Triangular-shaped adjunctions have been added to the filter structures to improve their transmission spectrum. These improved structures consist of air as the insulator and silver as the metal. The relative permittivity of metal has been described via the Drude,Drude–Lorentz, and Palik models. The first filter's transmission spectrum shows an acceptable transmittance. In the second optimized filter, the transmission spectrum has been improved. The transmittance spectrum can be tuned through adjusting the edge of the triangle in these four optimized filters. As a result, the bandwidths of resonance spectra can be adjusted. The theory of such tapered structures will be investigated by the tapered transmission line and will be solved with the transfer matrix method. This method shows a better performance and higher transmission efficiency in comparison with the basic structures. On the other hand, the final filter has been chosen as the best one because of its hexagonal resonator. The main reason for having a better result is due to a longer interaction length in comparison with the circular resonator. This in turn creates much better energy coupling and results in higher transmission.  相似文献   

12.
Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic.The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, ωD,for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density.Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics(GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.  相似文献   

13.
侯俊华  梁希侠 《中国物理》2007,16(10):3059-3066
A 2D electron-longitudinal-acoustic-phonon interaction Hamiltonian is derived and used to calculate the ground-state energy of the acoustic polarons in two dimensions. The numerical results for the ground-state energy of the acoustic polarons in two and three dimensions are obtained. The 3D results agree with those obtained by using the Feynman path-integral approach. It is found that the critical coupling constant of the transition from the quasifree state to the self-trapped state in the 2D case is much smaller than in the 3D case for a given cutoff wave-vector. The theory has been used to judge the possibility of the self-trapping for several real materials. The results indicate that the self-trappings of the electrons in AlN and the holes in AlN and GaN are expected to be observed in 2D systems.  相似文献   

14.
Optical tweezers have been a valuable research tool since their invention in the 1980s. One of the most important developments in optical tweezers in recent years is the creation of two-dimensional arrays of optical traps. In this paper, a method based on interference is discussed to form gradient laser fields, which may cause the spatial modulation of particle concentration. The parameters related to the optical tweezers array are discussed in detail and simulated by the Matlab software to show the influence of important parameters on the distribution of particle concentration. The spatial redistribution of particles in a laser interference field can also be predicted according to the theoretical analysis.  相似文献   

15.
An analysis of splice loss between photonic crystal fibers (PCFs) and conventional single-mode fibers (SMFs) is presented at bending and straight conditions, by using scalar effective index method (SEIM), vectorial effective index method (VEIM), and finite-difference frequency domain (FDFD) methods. It is shown that when there is a slight bending at the vicinity of splice joint, the spot size increases sharply at higher frequencies. On the basis of the obtained results, a mechanism to optimize the splice loss between PCFs and conventional SMFs, both with any geometry, is suggested. The results can be utilized for PCF- based devices to be jointed to SMF as a transmission medium.  相似文献   

16.
This paper reports that a dual-wavelength white light-emitting diode is fabricated by using a metal-organic chemical vapor deposition method. Through a 200-hours’ current stress, the reverse leakage current of this light-emitting diode increases with the aging time, but the optical properties remained unchanged despite the enhanced reverse leakage current. Transmission electron microscopy and cathodeluminescence images show that indium atoms were assembled in and around V-shape pits with various compositions, which can be ascribed to the emitted white light. Evolution of cathodeluminescence intensities under electron irradiation is also performed. Combining cathodeluminescence intensi- ties under electron irradiation and above results, the increase of leakage channels and crystalline quality degradation are realized. Although leakage channels increase with aging, potential fluctuation caused by indium aggregation can effectively avoid the impact of leakage channels. Indium aggregation can be attributed to the mechanism of preventing optical degradation in phosphor-free white light-emitting diode.  相似文献   

17.
A mathematical model of the mirror misalignment of a four-equal-sided nonplanar ring cavity is established in this letter.The variations in the optical axis are discussed through an augmented 6×6 ray matrix formulation.Numerical analysis shows that the self-consistence of the optical axis can always be obtained because of the thermal e?ects in any case of mirror misalignment.For a fabricated design,optical axis variations always appear.The influence of thermal e?ects(i.e.,pump power) on optical axis variations are studied.The tilt of the optical axis remains constant,whereas its decentration varies with pump power.Further analysis shows that the actual closing point of the optical axis moves close to the ideal point as the pump power increases.The theoretical analysis proposed is proven and validated by the experimental results.  相似文献   

18.
A small spatial optical filter is put into the rapid-scanning optical delay line (RSOD) to shape the spectrum of the reference beam in optical coherence tomography (OCT). The experimental results show that the longitudinal resolution can be improved by a factor of 81% with this method, while at the same time, the signal-to-noise ratio of the OCT system is not much affected. This method can be used in OCT systems that use RSOD as the reference arm with a light source of superluminescent diodes, femtosecond lasers and crystal fibre as well.  相似文献   

19.
We study the dynamics of vectorial coupled-mode solitons in one-dimensional photonic crystals with quadratic and cubic nonlinearities. Starting from Maxwell's equations, the vectorial coupled-mode equations for the envelopes of two fundamental-frequency optical mode and one low-frequency mode components due to optical rectification are derived by means of the method of multiple scales. A set of coupled soliton solutions of the vectorial coupled-mode equations is provided. The results show that a modulation of the fundamental-frequency optical modes occurs due to the optical rectification field resulting from the quadratic nonlinearity. The optical rectification field disappears when the frequency of the fundamental-frequency optical fields approaches the edge of the photonic bands.  相似文献   

20.
Optical windows with external surfaces shaped to satisfy operational environment needs are known as special windows. A novel special window, a sphere-cone-polynomial (SCP) window, is proposed. The formulas of this window shape are given. An SCP MgF2 window with a fineness ratio of 1.33 is designed as an example. The field-of-regard (FOR) angle is ±75°. From the window system simulation results obtained with the calculated fluid dynamics (CFD) and optical design software, we find that compared to the conventional window forms, the SCP shape can not only introduce relatively less drag in the airflow, but also have the minimal effect on imaging. So the SCP window optical system can achieve a high image quality across a super wide FOR without adding extra aberration correctors. The tolerance analysis results show that the optical performance can be maintained with a reasonable fabricating tolerance to manufacturing errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号