首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Low‐molecular weight oligo(carbonate‐ether) diols are important raw materials for polyurethane formation, which with tunable carbonate unit content (CU) may endow new thermal and mechanical performances to polyurethane. Herein, facile synthesis of oligo(carbonate‐ether) diols with number average molecular weight (Mn) below 2000 g mol?1 and CU tunable between 40% and 75% are realized in high activity by immortal copolymerization of CO2/propylene oxide (PO) using zinc‐cobalt double metal cyanide complex (Zn‐Co‐DMCC) in the presence of sebacic acid (SA). Mn of the oligomer is in good linear relationship to the mole ratio of PO and SA (PO/SA) and hence can be precisely controlled by adjusting PO/SA. Besides, the molecular weight distribution is quite narrow due to the rapid reversible chain transfer in the immortal copolymerization. High pressure and low temperature are favorable for raising CU. In all the reactions, the weight fraction of propylene carbonate (WPC) can even be controlled as low as 2.0 wt %, and the catalytic activity of Zn‐Co‐DMCC is above 1.0 kgg?1 cat. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Using excessively loaded propylene oxide (PO) as a solvent, the copolymerization of carbon dioxide (CO2) and PO was carried out with zinc glutarate catalyst, consequently producing poly(propylene carbonate) of high molecular weight in a high yield (64–70 g polymer per gram of catalyst) never achieved before. Both the PO used as solvent and the excessively loaded CO2 were fully recoverable, respectively, and reusable for their copolymerization, indicating that this is a clean, green polymerization process to convert CO2 to its polycarbonate. The polymer yield was further improved by scaling up the copolymerization process. Among zinc glutarate catalysts prepared through several synthetic routes, one from zinc oxide delivered the highest yield in the copolymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1863–1876, 1999  相似文献   

3.
Oligo and poly(propylene ether carbonate)-polyols with molecular weights from 0.8 to over 50 kg/mol and with 60–92 mol % carbonate linkages were synthesized by chain transfer copolymerization of carbon dioxide (CO2) and propylene oxide (PO) mediated by zinc glutarate. Online-monitoring of the polymerization revealed that the CTA controlled copolymerization has an induction time which is resulting from reversible catalyst deactivation by the CTA. Latter is neutralized after the first monomer additions. The outcome of the chain transfer reaction is a function of the carbonate content, i. e. CO2 pressure, most likely on account of differences in mobility (diffusion) of the various polymers. Melt viscosities of poly(ether carbonate)diols with a carbonate content between 60 and 92 mol % are reported as function of the molecular weight, showing that the mobility is higher when the ether content is higher. The procedure of PO/CO2 catalytic chain copolymerization allows tailoring the glass temperature and viscosity.  相似文献   

4.
A novel SalenCoIII (2,4‐dinitrophenoxy) (Salen = N,N'‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamino) and 1,10‐phenanthroline monohydrate catalyst system was designed and employed for the copolymerization of CO2 and propylene oxide (PO). The perfectly alternating copolymerization of CO2 and PO proceeds effectively under middle temperature and pressure to yield poly(propylene carbonate) with a high yield and a high number average molecular weight of polymer. The structure of polymer was characterized by the IR and NMR measurements. The perfectly alternating copolymer was confirmed. The MALDI‐TOF spectrum insinuates that the copolymerization of CO2 and PO was initiated by H2O. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A bifunctional cobalt Salen complex containing a Lewis acid metal center and two covalent bonded Lewis bases on the ligand was designed and used for the coupling of CO2 and epoxides under mild conditions. The complex exhibited excellent activity (turnover frequency = 673/h) and selectivity (no less than 97%) for polymer formation in the copolymerization of propylene oxide (PO) and CO2 at an appropriate combination of all variables. High molecular weight of 110 200 and yield 99% were achieved at a higher [PO]/[complex] ratio of 6000:1. The complex also worked satisfactorily for the terpolymerization of CO2, PO and cyclohexene oxide (CHO), without formation of cyclic carbonate or ether linkages to give the polycarbonate. High cyclohexene carbonate unit content in the CO2/PO/CHO terpolymers resulted in enhanced thermal stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Simple mixing of H3Co(CN)6 and ZnCl2 in methanol resulted in precipitates of [ZnCl]+2[HCo(CN)6]2?, constituting a new type of double metal cyanide (DMC) catalyst exhibiting a high performance in carbon dioxide (CO2)/propylene oxide (PO) copolymerization. High‐molecular‐weight poly(propylene carbonate‐co‐propylene oxide)s [poly(PC‐co‐PO)s] (Mn~40,000) were consistently obtained with high carbonate fractions (~60 mol %) and a high selectivity (>95%) with the new type of DMC catalyst. Conventional preparation of the DMC catalyst using K3Co(CN)6 and ZnCl2 required removing KCl through thorough washing and resulted in lower carbonate fractions (10–40 mol %), which depended on the washing conditions. Feeding hydrophobic diols such as 1,10‐decanediol as chain transfer agent preserved the high carbonate fraction (~60%) and enabled precise control of the molecular weight, including preparation of a low‐molecular‐weight poly(PC‐co‐PO)‐diol (Mn ~2000), which was a flowing viscous liquid with a low Tg (?30 °C) suitable for polyurethane applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4811–4818  相似文献   

7.
Zinc glutarates were synthesized from zinc oxides with varying purities via different stirring routes. The particle size and structure of these zinc glutarates were determined by wide‐angle X‐ray diffraction, transmission electron microscopy, and the laser particle size analyzer technique. The results demonstrated that the crystallinity and crystalline perfectness of zinc glutarate are the crucial factors that affect the catalytic activity for the copolymerization of carbon dioxide (CO2) and propylene oxide (PO). Additionally, the catalyst with a small particle size dramatically increased the yield of the copolymerization between CO2 and PO. High‐molecular‐weight and regular molecular structure poly(propylene carbonate)s (PPC)s were obtained from CO2 and PO with the synthesized zinc glutarates. Very high catalytic activity of 160.4 g polymer/g catalyst was afforded. The NMR technique revealed that the PPC copolymer exhibits an exact alternating copolymer structure. The relationships between the crystallinity and the particle size of catalyst with the catalytic activity are correlated and discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3579–3591, 2002  相似文献   

8.
This study demonstrates the superiority of a stable and well-defined heterogeneous cobalt hexacyanocobaltate (Co3[Co(CN)6]2), a typical cobalt Prussian Blue Analogue (CoCo-PBA) that catalyzes the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO) to produce poly(propylene monothiocarbonate)s (PPMTC). The number-average molecular weights of the PPMTC were 66.4 to 139.4 kg/mol, with a polydispersity of 2.0–3.9. The catalyst productivity reached 1040 g polymer/g catalyst (12.0 h). The oxygen-sulfur exchange reaction (O/S ER), which would generate random thiocarbonate and carbonate units, was effectively suppressed, and thus the selectivity of the monothiocarbonate over carbonate linkages was up to >99%. It was shown that no cyclic thiocarbonate byproduct was produced during the heterogeneous catalysis of COS/PO copolymerization using CoCo-PBA as the catalyst. The content of monothiocarbonate and ether units in the copolymer chain could be regulated by tuning the feeding amount of COS.  相似文献   

9.
刘光烜  郦聪  陈丹  倪旭峰  江黎明  沈之荃 《催化学报》2010,31(10):1242-1246
 由硼氢化稀土、二乙基锌和甘油制备了三元体系 Ln(BH4)3•3THF-ZnEt2-Gly (甘油) 用于催化环氧丙烷 (PO) 与 CO2 共聚反应, 详细考察了催化剂组成、不同稀土元素和溶剂性质对聚合反应的影响. 通过正交试验优化的催化剂组成和聚合条件为: Y(BH4)3•3THF-ZnEt2-Gly (摩尔比 = 3:60:20) 催化剂, 乙二醇二甲醚溶剂, PO/Y 摩尔比 1000, [Y] = 6.67 mmol/L, p(CO2) = 3.0 MPa, 80oC, 6 h. 最高催化效率可达 4908 g /(mol•h); 碳酸酯含量为 95.7%, 数均分子量为 6.97x104.  相似文献   

10.
Carbon dioxide (CO2) is an easily available renewable carbon source that can be used as a comonomer in the catalytic ring-opening polymerization of epoxides to form aliphatic polycarbonates. Herein, a series of new Salen-Co(III) bifunctional catalysts were synthesized for the first time, and they were studied to catalyze the copolymerization of CO2 and propylene oxide (PO)/cyclohexene oxide (CHO). At the same time, the effects of reaction conditions (electronic effect, temperature, time) on catalytic activity and selectivity were investigated. The results show that the Salen-Co(III) complexes with electron-withdrawing groups have higher selectivity and activity for propylene carbonate (PPC)/cyclohexylene carbonate (PCHC). At the same time, the Salen-Co(III) complexes can better catalyze the copolymerization of CHO and CO2 than that of PO and CO2. The catalytic efficiency of the four complexes increased with increasing temperature, and the best reaction condition is 80°C, 30 min and 2 MPa of CO2.  相似文献   

11.
To overcome the weak carbon dioxide (CO2) conversion ability of Zn‐Co double metal cyanide (DMC) catalyst, zinc glutarate (ZnGA) catalyst was introduced into the DMC catalytic system and applied for the synthesis of oligo (propylene‐carbonate) diols. The DMC/ZnGA composite catalyst (mass ratio = 10:1) exhibited an excellent synergistic effect which had enhanced CO2 activation ability, high yield and good selectivity. In copolymerization process, ZnGA catalyst not only provided activated CO2 for DMC catalyst, but also transferred the propagating chain with more alternating structures to DMC catalyst. Both of the two effects increased the carbonate content in the final products. Overall, DMC catalyst dedicated to the polymer chain growth, while the increased CO2 conversion mainly attributed to ZnGA catalyst. Oligo (propylene‐carbonate) diols with carbonate unit content of 45.1 mol%, Mn of 1228 g/mol, WPC of 4.3 wt% and high yield of 1689 g/g cat was obtained.  相似文献   

12.
《中国化学快报》2023,34(8):108011
Carbon dioxide-based polyols with ultra-low molecular weight (ULMW, Mn < 1000 g/mol) are emergent polyurethane precursors with economic and environmental benefits. However, the lack of effective proton-tolerant catalytic systems limits the development of this field. In this work, the polymeric aluminum porphyrin catalyst (PAPC) system was applied to the copolymerization of CO2 and propylene oxide, where sebacic acid, bisphenol A, poly(ethylene glycol), and water were used as chain transfer agents to achieve the controlled synthesis of CO2-polyols. The molecular weight of the resulting CO2-polyols could be facilely regulated in the range of 400–930 g/mol at low catalyst loadings, fully demonstrating its catalytic advantages of high activity, high product selectivity, and excellent proton tolerance of PAPC. Meanwhile, the catalytic efficiency of PAPC could reach up to 2.1–5.2 kg/g under organic CTA conditions, even reaching 1.9 kg/g using water as the CTA. The cPC content could be controlled within 1.0 wt% under the optimized conditions, indicating the excellent controllability of the PAPC system. ULMW CO2-polyols combines the advantages of low viscosity (∼3000 mPa s at 25 °C), low glass transition temperature (∼−73 °C), and high carbonate unit content (∼40%), which is important for the development of high-performance polyurethanes.  相似文献   

13.
Low‐molecular‐weight poly(propylene carbonate) resins, useful for polyurethane preparation, surfactant production and many other purposes, were obtained by copolymerization of CO2 and propylene oxide. This study describes an investigation into their stability against thermal degradation, offers details of the random chain‐breaking and “unzipping” processes, and suggests possible methods to avoid degradation.  相似文献   

14.
《中国化学》2018,36(4):299-305
The selective synthesis of polypropylene carbonate (PPC) and cyclic propylene carbonate (CPC) from coupling reaction of CO2 and propylene oxide (PO) is a long term pursuing target. Here we report that a temperature controllable porphyrin aluminum catalyst using 5,10,15,20‐tetra(1,2,3,4,5,6, 7,8‐octahydro‐1,4:5,8‐dimethanoanthracen‐9‐yl)porphyrin as ligand, once in conjunction with suitable onium salt, achieved single cycloaddition or copolymerization reaction. Only cycloaddition reaction happened at temperature above 75 °C to produce 100% CPC, whereas copolymerization became dominant to afford PPC with selectivity over 99% at 25 °C, and the obtained PPC showed over 99% carbonate linkage and 92% head‐to‐tail structure. Based on systematic analysis of the electronic and steric feature in the porphyrin ligand, it was found that the electronic feature of the substituent in porphyrin ligand was decisive for PPC selectivity, porphyrin ligand bearing strong electron‐donating substituents displayed a significantly reduced tolerance towards increased temperature with respect to PPC formation. Therefore, temperature‐responsive catalyst could be designed by suitable modification in porphyrin ligand, and such accurate synthesis of target product by one catalyst may create a useful and facile platform for selective PPC or CPC production.  相似文献   

15.

High-molecular-weight polymers with different contents of propylene carbonate (PC), and trimethylene carbonate (TMC) units in the polymer chain were synthesized by the coordination anionic copolymerization of carbon dioxide, propylene oxide (PO), and TMC in supercritical carbon dioxide (scCO2). Zinc adipate (ZnAd) was used as a catalyst. The terpolymerization products were characterized by 1H and 13C NMR, IR spectroscopy, GPC, and DSC. The effect of the reaction conditions on the yield, composition, structure, and molecular weight and thermal characteristics of the terpolymers was studied. The phase behavior of the synthesized polymers and mixtures of polypropylene carbonate with polytrimethylene carbonate was examined.

  相似文献   

16.
A zinc glutarate (ZnGA) catalyst was prepared from the reaction of zinc oxide and glutaric acid in dry toluene. ZnGA was found to exhibit a catalytic activity for the copolymerization of carbon dioxide (CO2) and propylene oxide (PO) and the homopolymerization of PO but to reveal no catalytic activity for the homopolymerization of ϵ-caprolactone (CL). The ZnGA-catalyzed polymerization was extended for the terpolymerization of CO2 with PO and CL, producing poly(propylene carbonate-co-ϵ-caprolactone)s (PPCCLs) with a reasonably high molecular weight in high yields. In the terpolymerization, PO and CL were used as both co-monomers and reaction media, after the reaction completed, the excess co-monomers were easily recovered and reused in the next terpolymerization batch. For the synthesized polymers, enzymatic and biological degradability were investigated.  相似文献   

17.
Cobalt(III) tetraphenylporphyrin chloride (TPPCoCl) was experimentally proved to be an active catalyst for poly(propylene carbonate) production. It was chosen as a model catalyst in the present work to investigate the initiation step of propylene oxide (PO)/CO2 copolymerization, which is supposed to be the ring opening of the epoxide. Ring‐opening intermediates ( 1 – 7 ) were detected by using 1H NMR spectroscopy. A first‐order reaction in TPPCoCl was determined. A combination of monometallic and bimetallic ring‐opening pathways is proposed according to kinetics experiments. Addition of onium salts (e.g., bis(triphenylphosphine)iminium chloride, PPNCl) efficiently promoted the PO ring‐opening rate. The existence of axial ligand exchange in the cobalt porphyrin complex in the presence of onium salts was suggested by analyzing collected 1H NMR spectra.  相似文献   

18.
A mechanistic study on the synthesis of propylene carbonate (PC) from CO2 and propylene oxide (PO) catalyzed by NbCl5 and organic nucleophiles such as 4‐dimethylaminopyridine (DMAP) or tetra‐n‐butylammonium bromide (NBu4Br) is reported. A combination of in situ spectroscopic techniques and kinetic studies has been used to provide detailed insight into the reaction mechanism, the formation of intermediates, and interactions between the reaction partners. The results of DFT calculations support the experimental observations and allow us to propose a mechanism for this reaction.  相似文献   

19.
A new chromium(III) complex, bearing a bis-thioether-diphenolate [OSSO]-type ligand, was found to be an efficient catalyst in the copolymerization of CO2 and epoxides to achieve poly(propylene carbonate), poly(cyclohexene carbonate), poly(hexene carbonate) and poly(styrene carbonate), as well as poly(propylene carbonate)(cyclohexene carbonate) and poly(propylene carbonate)(hexene carbonate) terpolymers.  相似文献   

20.
周喜  姚洁  王公应 《化学学报》2010,68(9):870-874
以无毒、合成简单、廉价的无机铵盐(氨基甲酸铵、碳酸氢铵、碳酸铵等)为助催化剂, 研究其对卤化钾(KCl、KBr、KI)催化CO2与环氧丙烷合成碳酸丙烯酯(PC)的影响. 结果表明, 卤化钾与无机铵盐显示出很好的协同催化效应. 其中以氨基甲酸铵为助催化剂, KI为主催化剂时, 催化合成PC的效果最好. 同时考察了催化剂用量、反应温度、CO2初始压力、PC的预加入量、反应时间等因素对反应的影响. 在优化条件下, PC收率大于99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号