首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature‐responsive Catalyst for the Coupling Reaction of Carbon Dioxide and Propylene Oxide
Abstract:The selective synthesis of polypropylene carbonate (PPC) and cyclic propylene carbonate (CPC) from coupling reaction of CO2 and propylene oxide (PO) is a long term pursuing target. Here we report that a temperature controllable porphyrin aluminum catalyst using 5,10,15,20‐tetra(1,2,3,4,5,6, 7,8‐octahydro‐1,4:5,8‐dimethanoanthracen‐9‐yl)porphyrin as ligand, once in conjunction with suitable onium salt, achieved single cycloaddition or copolymerization reaction. Only cycloaddition reaction happened at temperature above 75 °C to produce 100% CPC, whereas copolymerization became dominant to afford PPC with selectivity over 99% at 25 °C, and the obtained PPC showed over 99% carbonate linkage and 92% head‐to‐tail structure. Based on systematic analysis of the electronic and steric feature in the porphyrin ligand, it was found that the electronic feature of the substituent in porphyrin ligand was decisive for PPC selectivity, porphyrin ligand bearing strong electron‐donating substituents displayed a significantly reduced tolerance towards increased temperature with respect to PPC formation. Therefore, temperature‐responsive catalyst could be designed by suitable modification in porphyrin ligand, and such accurate synthesis of target product by one catalyst may create a useful and facile platform for selective PPC or CPC production.
Keywords:carbon dioxide  propylene oxide  copolymerization  cycloaddition  aluminum porphyrin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号