首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The homogeneous dinuclear zinc catalyst going back to the work of Williams et al. is to date the most active catalyst for the copolymerisation of cyclohexene oxide and CO2 at one atmosphere of carbon dioxide. However, this catalyst shows no copolymer formation in the copolymerisation reaction of propylene oxide and carbon dioxide, instead only cyclic carbonate is found. This behaviour is known for many zinc‐based catalysts, although the reasons are still unidentified. Within our studies, we focus on the parameters that are responsible for this typical behaviour. A deactivation of the catalyst due to a reaction with propylene oxide turns out to be negligible. Furthermore, the catalyst still shows poly(cyclohexene carbonate) formation in the presence of cyclic propylene carbonate, but the catalyst activity is dramatically reduced. In terpolymerisation reactions of CO2 with different ratios of cyclohexene oxide to propylene oxide, no incorporation of propylene oxide can be detected, which can only be explained by a very fast back‐biting reaction. Kinetic investigations indicate a complex reaction network, which can be manifested by theoretical investigations. DFT calculations show that the ring strains of both epoxides are comparable and the kinetic barriers for the chain propagation even favour the poly(propylene carbonate) over the poly(cyclohexene carbonate) formation. Therefore, the crucial step in the copolymerisation of propylene oxide and carbon dioxide is the back‐biting reaction in the case of the studied zinc catalyst. The depolymerisation is several orders of magnitude faster for poly(propylene carbonate) than for poly(cyclohexene carbonate).  相似文献   

2.
在稀土三元催化剂(三氯乙酸稀土配合物/二乙基锌/甘油)催化下实现了二氧化碳、环氧丙烷及环氧环己烷的三元共聚合.该催化剂对二氧化碳与环氧环己烷共聚的催化活性比对二氧化碳与环氧丙烷共聚的高.增加反应单体中环氧环己烷的比例可提高共聚物中环己撑碳酸酯的含量,大幅度改善共聚物的耐热性.  相似文献   

3.
The catalysis of the reaction of carbon dioxide with epoxides (cyclohexene oxide or propylene oxide) using the (salen)Cr(III)Cl complex as catalyst, where H(2)salen = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexenediimine (1), to provide copolymer and cyclic carbonate has been investigated by in situ infrared spectroscopy. As previously demonstrated for the cyclohexene oxide/CO(2) reaction in the presence of complex 1, coupling of propylene oxide and carbon dioxide was found to occur by way of a pathway first-order in catalyst concentration. Unlike the cyclohexene oxide/carbon dioxide reaction catalyzed by complex 1, which affords completely alternating copolymer and only small quantities of trans-cyclic cyclohexyl carbonate, under similar conditions propylene oxide/carbon dioxide produces mostly cyclic propylene carbonate. Comparative kinetic measurements were performed as a function of reaction temperature to assess the activation barrier for production of cyclic carbonates and polycarbonates for the two different classes of epoxides, i.e., alicyclic (cyclohexene oxide) and aliphatic (propylene oxide). As anticipated in both instances the unimolecular pathway for cyclic carbonate formation has a larger energy of activation than the bimolecular enchainment pathway. That is, the energies of activation determined for cyclic propylene carbonate and poly(propylene carbonate) formation were 100.5 and 67.6 kJ.mol(-1), respectively, compared to the corresponding values for cyclic cyclohexyl carbonate and poly(cyclohexylene carbonate) production of 133 and 46.9 kJ.mol(-1). The small energy difference in the two concurrent reactions for the propylene oxide/CO(2) process (33 kJ.mol(-1)) accounts for the large quantity of cyclic carbonate produced at elevated temperatures in this instance.  相似文献   

4.
由CO2 氧化环己烯 (CHO)配位催化共聚制得高Tg 的脂肪族聚碳酸亚环己基酯 ,并用IR、NMR和DSC等进行了表征 ,用TG对聚合物的热稳定性进行分析 .加入环氧丙烷 (PO)三元共聚并分析PO/CHO摩尔比对Tg 的影响 .加入异氰酸苯酯有提高产物特性粘数的作用  相似文献   

5.
肖敏  孟跃中 《高分子科学》2011,29(5):552-559
Using supported multi-component zinc dicarboxylate catalyst,poly(1,2-propylene carbonate-co-1,2-cyclohexylene carbonate)(PPCHC) was successfully synthesized from carbon dioxide(CO2) with propylene oxide(PO) and cyclohexene oxide(CHO).The conversion of epoxides dramatically increased up to 89.7%(yield:384.2 g of polymer per g of Zn) with increasing reaction temperature from 60℃to 80℃.The optimized reaction temperature is 80℃.The chemical structure,the molecular weight,as well as thermal and mechanical properties of the resulting terpolymers were investigated extensively. When CHO feed content(mol%) is lower than 10%,the PPCHC terpolymers have number average molecular weight(Mn) ranging from 102×103 to 202×103 and molecular weight distribution(MWD) values ranging from 2.8 to 3.5.In contrast to poly(propylene carbonate)(PPC),the introduction of small amount of CHO leads to increase in the glass transition temperature from 38.0℃to 42.6℃.Similarly,the mechanical strength of the synthesized terpolymer is greatly enhanced due to the incorporation of CHO.These improvements in mechanical and thermal properties are of importance for the practical application of PPC.  相似文献   

6.
The catalytic properties of a set of ansa‐complexes (R‐Ph)2C(Cp)(Ind)MCl2 [R = tBu, M = Ti ( 3 ), Zr ( 4 ) or Hf ( 5 ); R = MeO, M = Zr ( 6 ), Hf ( 7 )] in α‐olefin homopolymerization and ethylene/1‐hexene copolymerization were explored in the presence of MAO (methylaluminoxane). Complex 4 with steric bulk tBu group on phenyl exhibited remarkable catalytic activity for ethylene polymerization. It was 1.6‐fold more active than complex 11 [Ph2C(Cp)(Ind)ZrCl2] at 11 atm ethylene pressure and was 4.8‐fold more active at 1 atm pressure. The introduction of bulk substituent tBu into phenyl groups not only increased the catalytic activity greatly but also enhanced the content of 1‐hexene in ethylene/1‐hexene copolymerization. The highest 1‐hexene incorporation was 25.4%. In addition, 4 was also active for propylene and 1‐hexene homopolymerization, respectively, and low isotactic polypropylene (mmmm = 11.3%) and isotactic polyhexene (mmmm = 31.6%) were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Complexes (R^1Cp)(R^2Ind)ZrCl2, the catalysts previously reported active for ethylene polymerization showed high activity in ethylene/1-hexene copolymerization and propylene polymerization in the presence of MAO. The content of 1-hexene in copolymers ranged from 1.2% to 3.2%. In propylene polymerization the complex 1 showed the highest activity, up to 1.2×10^6 g of polypropylene per mol of catalyst per hour. Based on the analysis of NMR spectral data, the relationships between complex structures and polymerization results were explored.  相似文献   

8.
二氧化碳-环氧乙烷-氧化环己烯三元共聚物的制备与性能   总被引:2,自引:0,他引:2  
采用稀土三元催化剂实现了二氧化碳、氧化环己烯与环氧乙烷的三元共聚,当环氧乙烷和氧化环己烯等摩尔投料时催化活性达到690 g/(mol Zn h),所得三元共聚物的数均分子量达到7.9×104,远程异核多量子相关核磁谱证明所得共聚物主要是无规三元共聚物,其中环氧乙烷-二氧化碳结构单元与氧化环己烯-二氧化碳结构单元相连的全交替结构占26.9%.二氧化碳-氧化环己烯共聚物的脆性导致其熔体加工十分困难,引入环氧乙烷为第三单体进行三元共聚,实现了二氧化碳-氧化环己烯共聚物的增韧,解决了其熔体加工难题,而且改变环氧单体比率能够调节三元共聚物的耐温性能和力学性能,当环氧乙烷与氧化环己烯等摩尔投料时,所得三元共聚物在20℃下的杨氏模量达到(900±17)MPa,拉伸强度为(38±2)MPa,断裂伸长率为(26.3±9.2)%.  相似文献   

9.
As a means for the chemical fixation of carbon dioxide and the synthesis of biodegradable polycarbonates, copolymerizations of carbon dioxide with various epoxides such as cyclohexene oxide (CHO), cyclopetene oxide, 4-vinyl-1-cyclohexene-1,2epoxide, phenyl glycidyl ether, allyl glycidyl ether, propylene oxide, butene oxide, hexene oxide, octene oxide, and 1-chloro-2,3-epoxypropane were investigated in the presence of a double metal cyanide catalyst (DMC). The DMC catalyst was prepared by reacting K3Co(CN)6 with ZnCl2, together with tertiary butyl alcohol and poly(tetramethylene ether glycol) as complexing reagents and was characterized by various spectroscopic methods. The DMC catalyst showed high activity (526.2 g-polymer/g-Zn atom) for CHO/CO2 (PCO2 = 140 psi) copolymerization at 80 °C, to yield biodegradable aliphatic polycarbonates of narrow polydispersity (Mw/Mn = 1.67) and moderate molecular weight (Mn = 8900). The DMC catalyst also showed high activities with different CO2 reactivities for other epoxides to yield various aliphatic polycarbonates with narrow polydispersity.  相似文献   

10.
Common CO2‐based biodegradable polycarbonates like poly(propylene carbonate) or poly(cyclohexene carbonate) are generally hydrophobic, leading to slow biodegradation rate and poor cell adhesion, which limit their applications in the biomedical field. Here hydrophilic polycarbonates were prepared by one‐pot terpolymerization of CO2, propylene oxide (PO), and 2‐((2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)methyl)oxirane (ME3MO) using binary Salen Co(III)‐Cl/PPNCl catalyst system. The resultant terpolymers showed one glass transition temperature (Tg), which decreased with the increase of ME3MO units in the terpolymers (FME3MO). Water contact angles of the resultant terpolymers with FME3MO of 4.2?23.6% were 68?25°, while that of poly(propylene carbonate) was 90°, indicating that the terpolymers became hydrophlilic. Furthermore, the terpolymers with FME3MO more than 25.8% exhibited reversible and rapid thermo‐responsive property in water, and the lower critical solution temperature (LCST) was highly sensitive to FME3MO. In particular, aqueous solution of the terpolymer with FME3MO of 72.6% showed a LCST around 35.2 °C, close to body temperature, which was promising for biomedical applications, especially for in vivo applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2834–2840.  相似文献   

11.
We investigated the catalytic performance of both bridged unsubstituted [rac‐EtInd2ZrMe2, rac‐Me2SiInd2ZrMe2] and 2‐substituted [rac‐Et(2‐MeInd)2ZrMe2), rac‐Me2Si(2‐MeInd)2ZrMe2] dimethylbisindenylzirconocenes activated with triisobutyl aluminum (TIBA) as a single activator in (a) homopolymerizations of ethylene and propylene, (b) copolymerization of ethylene with propylene and hexene‐1, and (c) copolymerization of propylene with hexene‐1 (at AlTIBA/Zr = 100‐300 mol/mol). Unsubstituted catalysts were inactive in homopolymerizations of ethylene and propylene and copolymerization of propylene with hexene‐1 but exhibited high activity in copolymerizations of ethylene with propylene and hexene‐1. 2‐Substituted zirconocenes activated with TIBA were active in homopolymerizations of ethylene and propylene and exhibited high activity in copolymerization of ethylene with propylene and hexene‐1, and in copolymerization of propylene with hexene‐1. Comparative microstructural analysis of ethylene‐propylene copolymers prepared over rac‐Me2SiInd2ZrMe2 activated with TIBA or Me2NHPhB(C6F5)4 has shown that the copolymers formed upon activation with TIBA are statistical in nature with some tendency to alternation, whereas those with borate activated system show a tendency to formation of comonomer blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2934–2941, 2010  相似文献   

12.
A bifunctional cobalt Salen complex containing a Lewis acid metal center and two covalent bonded Lewis bases on the ligand was designed and used for the coupling of CO2 and epoxides under mild conditions. The complex exhibited excellent activity (turnover frequency = 673/h) and selectivity (no less than 97%) for polymer formation in the copolymerization of propylene oxide (PO) and CO2 at an appropriate combination of all variables. High molecular weight of 110 200 and yield 99% were achieved at a higher [PO]/[complex] ratio of 6000:1. The complex also worked satisfactorily for the terpolymerization of CO2, PO and cyclohexene oxide (CHO), without formation of cyclic carbonate or ether linkages to give the polycarbonate. High cyclohexene carbonate unit content in the CO2/PO/CHO terpolymers resulted in enhanced thermal stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
研究了高分子量聚碳酸1,2-丙二酯的碱催化水解反应,并通过核磁共振谱仪和气相色谱质谱联用仪对降解反应产物的解析,发现碱催化聚碳酸1,2-丙二酯水解是无规断链反应和解拉链反应共同作用的结果.结果表明高分子量聚碳酸1,2-丙二酯的碱催化水解是制备低分子量聚碳酸1,2-丙二酯的方法之一.  相似文献   

14.
PHBV-GMA与PHBV-GMA/PPC共混物中接枝物的热性能与形态结构   总被引:2,自引:0,他引:2  
以甲基丙烯酸缩水甘油酯(GMA)单体对聚(3-羟基丁酸酯-3-羟基戊酸酯)(PHBV)接枝改性,得到的产物PHBV-GMA与封端后的聚碳酸亚丙酯(PPC)反应性共混。索氏抽提器提取PHBV-GMA和PHBV-GMA/PPC共混物,分别得到两种接枝产物PHBV-g-GMA和PHBV-g-PPC,用差示扫描量热法(DSC)、偏光显微镜(POM)以及原子力显微镜(AFM)研究其热性能和形态结构。结果发现,GMA接枝后,对PHBV结晶有成核效应。PPC接枝PHBV后,接枝物PHBV-g-PPC结晶度降低,球晶尺寸减小,PHBV和PPC两种大分子间的相分离程度降低,相容性明显提高。  相似文献   

15.
采用熔融共混的方法制备了聚碳酸1,2-丙二酯(PPC)/聚琥珀酸丁二酯(PBS)共混物和PPC/PBS/DAOP(邻苯二甲酸二烯丙酯)增塑共混物,对共混物的相容性、热性能、结晶性和物理机械性能进行了初步研究.研究结果表明PPC/PBS共混物为不相容体系,PPC对PBS的结晶度影响很小;PBS的加入提高了共混物的起始热分解温度(Td-5%),当共混物中PBS含量从10%增加到90%时,共混物的Td-5%可分别增加15℃到59℃.DAOP对PPC/PBS共混物有增塑作用,当PPC/PBS/DAOP的比例从30/70/0变化到30/70/30时,共混物玻璃化转变温度(Tg)下降了36.9℃.与PPC/PBS共混物相比,组成优化的DAOP增塑共混物PPC/PBS/DAOP(PPC/PBS/DAOP=30/70/5)的断裂伸长率和断裂能最大可提高31倍和34倍,分别达到655.1%和3.4 J/mm2,因此引入DAOP尽管使共混材料的热稳定性有所下降,但拓宽了PPC/PBS共混材料的使用温度窗口.  相似文献   

16.
采用非异氰酸酯路线合成了1,6-六亚甲基二氨基甲酸羟异丙酯(BPU),分子量为320.利用熔融共混方法制备了聚碳酸1,2-丙二酯(PPC)/BPU共混物.研究发现BPU与PPC间有较好的相容性,随着BPU含量的增加,共混体系的起始热分解温度(Td.5%)可分别增加24~33℃,共混物韧性也显著提高,断裂伸长率最大可增至...  相似文献   

17.
以CO2和环氧环己烷(CHO)为原料合成的聚碳酸环己烯酯(PCHC),是一种新型可降解材料.本文对聚碳酸环己烯酯的合成、性能及应用研究进行了综述.  相似文献   

18.
利用β-环糊精提高聚碳酸1,2-丙二酯的热稳定性   总被引:2,自引:1,他引:1  
将聚碳酸1,2-丙二酯与β-环糊精在60℃下固相共混,得到了两者的内含复合物.线性的聚碳酸1,2-丙二酯穿入β-环糊精分子空腔形成准聚轮烷结构,导致聚合物分子链的刚性增大,主链上受热易发生断裂的碳酸酯键由于受到环糊精空腔的保护变得稳定,聚碳酸1,2-丙二酯的热稳定性得到提高.实验结果表明,所得内含复合物的玻璃化转变温度(T_g)提高了5℃,在N_2氛围下10%热失重温度(T_(d-10%))增加了33℃.  相似文献   

19.
Reaction of carbon dioxide with propylene oxide in the presence of catalysts with condensed zinc species (;derived from diethylzinc and dihydric phenols, e.g. catechol o? C6H4(;OH)2 and saligenin 0? HOC6H4CH2OH) yields poly(;propylene carbonate) as well as propylene carbonate. The above reaction in the presence of catalysts with noncondensed zinc species (;derived from diethylzinc and phenol) yields propylene carbonate as the main product, but in relatively low yield. The mechanism of the linear and cyclic carbonate formation is discussed in terms of the nature of the catalyst's active sites for both types.  相似文献   

20.
Zinc complexes derived from benzoic acids containing electron-withdrawing substituents have been synthesized from Zn(II)(bis-trimethylsilyl amide)(2) and the corresponding carboxylic acid (2,6-X(2)C(6)H(3)COOH, where X = F, Cl, or OMe) in THF and structurally characterized via X-ray crystallography. The 2,6-difluorobenzoate complex crystallizes from THF or CH(3)CN as a seven membered zinc aggregate, where the metal atoms are interconnected by a combination of 10 mu-benzoates and mu(4)-oxo ligands, that is, [(2,6-difluorobenzoate)(10)O(2)Zn(7)](solvent)(2), solvent = THF (1) and CH(3)CN (1a). On the other hand, the 2,6-dichlorobenzoate zinc derivative crystallizes from THF as a dimer, [(2,6-dichlorobenzoate)(4)Zn(2)](THF)(3) (2), where the two zinc centers are bridged by three benzoate ligand. One of the zinc centers possesses a tetrahedral ligand environment where the fourth ligand is a unidentate benzoate, and the other zinc center has an octahedral arrangement of ligands which is accomplished by the additional binding of three THF molecules. Upon dissolution of complex 1 or 2 in the strongly binding pyridine solvent, disruption of these zinc carboxylates occurs with concomitant formation of mononuclear zinc bis-benzoates with three pyridine ligands in the metal coordination sphere. Complexes 1 and 2 were found to be effective catalysts for the copolymerization of cyclohexene oxide and carbon dioxide to afford polycarbonates devoid of polyether linkages, that is, completely alternating copolymers. Although these catalysts or catalyst precursors in the presence of CO(2)/propylene oxide afforded mostly propylene carbonate, they did serve as efficient catalysts for the terpolymerization of carbon dioxide/cyclohexene oxide/propylene oxide. The reactivities of these zinc carboxylates were very similar to those previously reported analogous complexes which have not been structurally characterized. Hence, it is suggested here that all of these zinc carboxylates provide similar catalytic sites for CO(2)/epoxide coupling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号