首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology.With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology  相似文献   

2.
Ultrasonic oil production technique for enhanced oil recovery (EOR) attracts more attention due to its high adaptability, simple operation, low cost and zero pollution to the oil reservoir. In this paper, recent new downhole tools used for enhanced oil recovery developed in China are summarized. Furthermore, research advance on some key problems that affect the widespread application of ultrasonic oil production technique in China are also summarized in view of what are the primary factors that influence crude oil paraffin inhibition and viscosity reduction, whether ultrasonic excitation is better than chemical agent for any plugs removal and whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. The purpose of this paper is to provide reference for the broad application of ultrasonic oil production for enhance oil recovery.  相似文献   

3.
Ultrasonic processing has attracted increasing attention by people because ultrasonic technology may represent a flexible ‘green’ alternative for energy efficient processes. The major challenges for the power ultrasound application in real situations are the design and development of specific power ultrasonic systems for large-scale operations. Thus, new families of power ultrasonic transducers have been developed in recent years to meet actual needs, and this contributes to the implementation of power ultrasound of application in many fields such as chemical industry, food industry and manufacturing. This paper presents the current state of ultrasonic transducers of magnetostrictiv type and piezoelectric type as well as applications of power ultrasound in various industrial fields including chemical reactions, drying/dehydration, welding, extraction, heat transfer enhancement, de-ice, enhanced oil recovery, droplet atomization, cleaning and fine particle removal. The review paper helps to understand the current development of power ultrasonic technology and its applications in various situations, and induce extended applications of power ultrasound to more and more fields.  相似文献   

4.
Petroleum is a continuous and dynamically stable colloidal system. In the process of oil extraction, transportation, and post-treatment, the stability of the petroleum sol system is easily destroyed, resulting in asphaltenes precipitation that can make pore throat, oil wells, and pipelines blocked, thereby damaging the reservoir and reducing oil recovery. In this paper, removing near-well plugging caused by asphaltene deposition with high-power ultrasound is investigated. Six PZT transducers with different parameters were used to carry out the experimental study. Results show that ultrasonic frequency is one important factor for removing colloidal precipitation plugging in cores, it could not be too high nor too low. The optimum ultrasonic frequency is 25 kHz; Selecting transducers with a higher power is an effective way to improve the removal efficiency. The optimum ultrasonic power is 1000 W. With the increase of ultrasonic treatment time, the recovery rate reaches the maximum and tends to be stable. ultrasonic processing time should be controlled within 120 min. Besides, three methods — ultrasonic treatment alone, chemical injection alone, and ultrasound-chemical method — for removing colloidal precipitation plugging are compared. Results indicate that the ultrasound-assisted chemical method is better than chemical injection alone or ultrasonic treatment alone to remove colloidal sediment in the core. Finally, the mechanism of the ultrasonic deplugging technique is analyzed from three aspects: cavitation effect, the thermal effect, and mechanical vibration.  相似文献   

5.
T.J. Bulat 《Ultrasonics》1974,12(2):59-68
Ultrasonic energy performs a physical function in the process of cleaning which can be obtained by no other industrial tool. Its ultimate success depends on the selection of proper equipment and material, a knowledge of cavitation, chemical cleaning techniques and process control. This paper, the third in the series on the industrial applications of macrosonics, reviews those factors which are important in production ultrasonic cleaning systems.  相似文献   

6.
Oil saturated cylindrical sandstone cores were placed into imbibition cells where they contacted with an aqueous phase and oil recovery performances were tested with and without ultrasonic radiation keeping all other conditions and parameters constant. Experiments were conducted for different initial water saturation, oil viscosity and wettability. The specifications of acoustic sources such as ultrasonic intensity (45–84 W/sq cm) and frequency (22 and 40 kHz) were also changed. An increase in recovery was observed with ultrasonic energy in all cases. This change was more remarkable for the oil-wet medium. The additional recovery with ultrasonic energy became lower as the oil viscosity increased. We also designed a setup to measure the ultrasonic energy penetration capacity in different media, namely air, water, and slurry (sand + water mixture). A one-meter long water or slurry filled medium was prepared and the ultrasonic intensity and frequency were monitored as a function of distance from the source. The imbibition cells were placed at certain distances from the sources and the oil recovery was recorded. Then, the imbibition recovery was related to the ultrasonic intensity, frequency, and distance from the ultrasonic source.  相似文献   

7.
杜乔  姜文  李春景 《应用声学》2017,25(5):53-55
燃油系统输油流量测试是飞机燃油系统地面模拟试验的一项重要内容;由于试验油箱内部的各管路与真实飞机油箱管路的布置是一致的,不适合在油箱内的狭小空间安装涡轮流量计,并且会破坏管路流阻特性;由于使用传统油箱油量标定的方法进行输油流量测量耗时耗力,所以需要采用一种新的技术或测量方法来完成油箱输油流量的测量;超声波流量计体积小,不会破坏输油管路流阻特性,防爆等级也符合试验要求;对超声波流量计在浸油状态下测试进行可行性分析,将超声波流量计在飞机燃油系统试验中实现创新性应用;通过试验证明了超声波流量计在飞机燃油流量测试中发挥了重要作用,并且首次将超声波流量计应用到飞机试验油箱内部输油管路的流量测试中,这对飞机其他系统的流量测试和飞机机上排故试验起到了重要作用。  相似文献   

8.
This study presents an application of ultrasonic technology in the high voltage liquid insulation domain towards the reduction of pour point of vegetable oil samples for the utilization of vegetable oils as liquid insulation in cold climate areas on power transformers. Pour point reduction has been achieved by processing the vegetable oil samples by using ultrasonic treatment process with 100 W and 30 kHz ultrasonic waves for various exposure times of 15, 30, 45 and 60 min. Edible vegetable oils such as sunflower oil, palm oil, sesame oil and non edible vegetable oils such as honge oil, neem oil and punna oil are considered as two categories of vegetable oils for this experimental investigation. Ultrasonic treatment process results in the reduction of pour point of vegetable oils to meet out the standard value of pour point for liquid insulation as per IEEE Standard C57.147, 2018. A significant reduction in pour point temperature of vegetable oil samples have been obtained with an increased exposure time. The obtained variations in pour point after exposure with ultrasonic waves may be due to the possible changes in crystallization kinetics of fatty acids components of vegetable oil samples due to energy input of ultrasonic waves. The experimental results have given a way towards the positive encouragement and development with ultrasonic treatment for achieving low pour point vegetable oils as liquid insulation in power transformers for applications on cold climatic areas.  相似文献   

9.
安海霞  邓坤  闭治跃 《中国光学》2017,10(3):321-330
自激光器问世以来,激光在各领域的需求和应用非常广泛,而随着高功率激光装备输出功率不断提高,重量与体积已成为制约高功率激光装备应用与发展的关键问题之一。由于当前高功率激光装备仍将提高输出功率作为其发展目标,加之高功率激光装备结构功能复杂、能量转换效率低等特点,制约了高功率激光装备小型化、轻量化的实现。本文在介绍高功率激光装备的特点及其小型化、轻量化技术约束的基础上,综述了装备常用小型化、轻量化技术应用、新型高功率激光技术应用、提高能量转换效率及散热效率等高功率激光装备小型化、轻量化实现途径,以及各种技术途径在高功率激光装备中已有的应用。根据高功率激光装备现状及特点,其在小型化、轻量化方面具有很大的发展空间及应用前景。  相似文献   

10.
华强 《应用声学》2021,40(2):274-278
利用自主研制的超声发生仪,选取不同渗透率的天然岩心,模拟实际地层的温度、压力进行室内驱替实验,评价了渗流过程中超声作用对储层水敏性伤害去除的影响。研究表明,对于去除储层水敏性,超声频率存在最佳范围,频率与功率存在一定的补偿关系;超声最佳处理时间与储层物性有一定联系;渗透率恢复率与储层物性呈现较复杂的关系。研究结果有助于进一步认识超声水敏性去除的作用机理。  相似文献   

11.
Applied to Enhanced Oil Recovery, microemulsions are valuable systems for extracting the crude oil trapped by capillary forces in the porous reservoir rocks. The performances of the injected formulations are often assessed by quantifying oil composition in model systems that contain relatively high amount of surfactant/co-surfactant. Recently, the question of representativity of such systems was raised because kinetics aspects and complexity of crude were neglected in model systems and are likely to impact the process efficiency. The current quantification techniques limit the characterization of representative model systems as they are destructive, time consuming and not often applicable to dark or opaque systems. In the original aim to provide a quantitative kinetic study of such microemulsions, we propose a high resolution T1-weighted imaging technique to have access to 1D-composition profiles of co-surfactant, oil and brine in Winsor I, Winsor III and Winsor II microemulsions. The analysis is carried out on model systems at equilibrium for proof of concept. Results are correlated with X-Ray Micro-CT experiments to provide better interpretations and assess the method accuracy. We provide conditions of validity of the developed NMR method and discuss its potential limitations. To a larger extent, the method could be of interest to other applications that use similar systems.  相似文献   

12.
A well-known complication in the oil reservoir during oil production is asphaltene deposition in and around the production wellbore. Deposition of asphaltene around the production wellbore may cause a significant pressure drop and in turn loss of efficiency in the production process. Various mechanical and chemical methods have been employed in order to reduce asphaltene formation or to eliminate the precipitate. A novel technique which presented a great potential for prevention or elimination of asphaltene is spreading out the high energy ultrasound wave within the oil reservoir. In this study, in a glass micro-model, asphaltene precipitation was first simulated in a transparent porous medium and its removal by application of high energy ultrasound wave was then investigated. To simulate asphaltene precipitation, the micro-model was first saturated with oil and then a normal-pentane was injected. This was followed by flooding the porous media with brine while propagating ultrasound waves (30 kHz and 100 W) to eliminate asphaltene precipitation. The experiment setup was equipped with a temperature controller. The results indicate a significant reduction in asphaltene precipitation in the oil reservoir may be achieved by application of ultrasound energy. Asphaltene particle deposition has been solved reversibly in the oil layer of porous medium and with the oil layering mechanism, the rate of oil production has been increased. In some spots, water/oil emulsion has been formed because of the ultrasonic vibration on the wall. Both the crude and synthetic oils were examined.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(5):1618-1623
Limited resources of conventional fuels such as petrodiesel have led to the search for alternative fuels. Various convention batch/continuous processes for the biodiesel production have been developed before the recent year. All processes are time consuming with high labor cost. Thus, we need a new process for biodiesel production which reduces the reaction time and production cost as well as save the energy. In this work, ultrasonic assisted transesterification of Jatropha curcas oil is carried out in the presence of methanol and potassium hydroxide (KOH) as catalyst, keeping the molar ratio of oil to alcohol 1:5, catalyst concentration 0.75 wt% of oil, ultrasonic amplitude 50% and pulse 0.3 cycle, 7 min reaction time under atmospheric condition. Ultrasonic mixing has increased the rate of transesterification reaction as compare to the mechanical mixing.  相似文献   

14.
A new method for the ultrasonic enhancement of oil recovery from failing wells is described. The technology involves lowering a source of power ultrasound to the bottom of the well either for a short treatment before removal or as a permanent placement for intermittent use. In wells where the permeability is above 20 mD and the porosity is greater than 15% ultrasonic treatment can increase oil production by up to 50% and in some cases even more. For wells of lower permeability and porosity ultrasonic treatment alone is less successful but high production rates can be achieved when ultrasound is applied in conjunction with chemicals. An average productivity increase of nearly 3 fold can be achieved for this type of production well using the combined ultrasound with chemical treatment technology.  相似文献   

15.
Water flooding is one of widely used technique to improve oil recovery from conventional reservoirs, but its performance in low-permeability reservoirs is barely satisfactory. Besides adding chemical agents, ultrasonic wave is an effective and environmental-friendly strategy to assist in water flooding for enhanced oil recovery (EOR) in unconventional reservoirs. The acoustic frequency plays a dominating role in the EOR performance of ultrasonic wave and is usually optimized through a series of time-consuming laboratory experiments. Hence, this study proposes an unsupervised learning method to group low-permeability cores in terms of permeability, porosity and wettability. This grouping algorithm succeeds to classify the 100 natural cores adopted in this study into five categories and the water flooding experiment certificates the accuracy and reliability of the clustering results. It is proved that ultrasonic waves can further improve the oil recovery yielded by water-flooding, especially in the oil-wet and weakly water-wet low-permeability cores. Furthermore, we investigated the EOR mechanism of ultrasonic waves in the low-permeability reservoir via scanning electron microscope observation, infrared characterization, interfacial tension and oil viscosity measurement. Although ultrasonic waves cannot ameliorate the components of light oil as dramatically as those of heavy oil, such compound changes still contribute to the oil viscosity and oil-water interfacial tension reductions. More importantly, ultrasonic waves may modify the micromorphology of low-permeability cores and improve the pore connectivity.  相似文献   

16.
Lynnworth LC  Liu Y 《Ultrasonics》2006,44(Z1):e1371-e1378
Ultrasonic flowmeters are one of the fastest-growing technologies within the general field of instruments for process monitoring, measurement and control. Today, acoustic/ultrasonic flowmeters utilize clamp-on and wetted transducers, single and multiple paths, paths on and off the diameter, passive and active principles, contrapropagating transmission, reflection (Doppler), tag correlation, vortex shedding, liquid level sensing of open channel flow or flow in partially-full conduits, and other interactions. Ultrasonic flowmeters are applicable to liquids, gases, and multiphase mixtures, but not without limits. However, no single technology, nor one type of interaction within a technology, can be best for all fluids, occasions and situations. Users who select a particular type of ultrasonic flowmeter over one based on a competing (nonultrasonic) technology often do so for one (or more) of the following reasons: ultrasonic equipment provides a useful measurement whether the fluid is single-phase or not single-phase; equipment is easy to use; flow regime can be laminar, transitional or turbulent; transducers are totally external (no penetration of the pressure boundary); transducers, if not clamp-on, are minimally invasive; no excess pressure drop; when certain conditions are met, accuracy can be better than 0.5%; fast (ms) response; reliable despite temperature extremes; reasonable purchase price, installation, operating and maintenance costs. Sometimes mass flowrate is obtainable. Energy flowrate might be achieved for natural gas and biogas in the near future. How did ultrasonic flowmeters advance in the past fifty years to support such claims? This paper tries to answer this question by looking at ultrasonic flowmeter inventions and publications since 1955, to see how four key problems were solved.  相似文献   

17.
Ultrasonic high-frequency complex vibrations are effective for various ultrasonic high-power applications. Three types of ultrasonic complex vibration system with a welding tip vibrating elliptical to circular locus for packaging in microelectronics were studied. The complex vibration sources are using (1) a longitudinal-torsional vibration converter with diagonal slits that is driven only by a longitudinal vibration source, (2) a complex transverse vibration rod with several stepped parts that is driven by two longitudinal vibration source crossed at a right angle and (3) a longitudinal vibration circular disk and three longitudinal transducers that are installed at the circumference of the disk.  相似文献   

18.
Minimising oil droplet size using ultrasonic emulsification   总被引:1,自引:0,他引:1  
The efficient production of nanoemulsions, with oil droplet sizes of less than 100 nm would facilitate the inclusion of oil soluble bio-active agents into a range of water based foods. Small droplet sizes lead to transparent emulsions so that product appearance is not altered by the addition of an oil phase. In this paper, we demonstrate that it is possible to create remarkably small transparent O/W nanoemulsions with average diameters as low as 40 nm from sunflower oil. This is achieved using ultrasound or high shear homogenization and a surfactant/co-surfactant/oil system that is well optimised. The minimum droplet size of 40 nm, was only obtained when both droplet deformability (surfactant design) and the applied shear (equipment geometry) were optimal. The time required to achieve the minimum droplet size was also clearly affected by the equipment configuration. Results at atmospheric pressure fitted an expected exponential relationship with the total energy density. However, we found that this relationship changes when an overpressure of up to 400 kPa is applied to the sonication vessel, leading to more efficient emulsion production. Oil stability is unaffected by the sonication process.  相似文献   

19.
Food drying process by power ultrasound   总被引:3,自引:0,他引:3  
Drying processes, which have a great significance in the food industry, are frequently based on the use of thermal energy. Nevertheless, such methods may produce structural changes in the products. Consequently, a great emphasis is presently given to novel treatments where the quality will be preserved. Such is the case of the application of high-power ultrasound which represents an emergent and promising technology. During the last few years, we have been involved in the development of an ultrasonic dehydration process, based on the application of the ultrasonic vibration in direct contact with the product. Such a process has been the object of a detailed study at laboratory stage on the influence of the different parameters involved. This paper deals with the development and testing of a prototype system for the application and evaluation of the process at a pre-industrial stage. Such prototype is based on a high-power rectangular plate transducer, working at a frequency of 20 kHz, with a power capacity of about 100 W. In order to study mechanical and thermal effects, the system is provided with a series of sensors which permit monitoring the parameters of the process. Specific software has also been developed to facilitate data collection and analysis. The system has been tested with vegetable samples.  相似文献   

20.
The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase–hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase–hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号