首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of bleaching using high power ultrasound (20 kHz) on the quality of olive oil were considered in this study, in order to verify the modifications that can occur in fatty acid composition and minor compounds. During the treatment of olive oil under ultrasonic waves, a rancid odour has been detected. Treated olive oils show no significant changes in their chemical composition but the presence of some volatile compounds, due to ultrasonic treatment. Some off-flavour compounds (hexanal, hept-2-enal and 2(E),4(E)-decadienal) resulting from the sonodegradation of olive oil have been identified. A wide variety of analytical techniques (GLC, HPLC and GC/MS) were used to follow the quality of bleached olive oils with ultrasonic waves by the determination of the amounts of certain minor compounds such as sterols and tocopherols. Steradienes, resulting from the dehydration of sterols, were detected with small quantities especially in severe conditions of sonication. Solid phase micro-extraction (SPME) coupled to gas chromatography was known to be a sensitive technique to follow changes in the oxidative state of vegetable oils by measuring the amount of volatile materials produced during the refining process.  相似文献   

2.
In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both β and β’ crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.  相似文献   

3.
A failure of an insulation system of a power transformer can result into an interruption of a power supply and subsequently to a large economic damage. In some cases, the malfunction is so serious that a transformer may explode and catch fire resulting in a direct threat to the life of the device operator. These devices rely on a combined insulation system oil-paper. The oil in a transformer not only impregnates the pressboard paper insulation, hence increases its electric breakdown strength, but also acts as a coolant of active parts of the device. During the cooling, the oil flows in the transformer tank around the core, windings and isolation barriers from hardened paper. At the interface of two dielectrics, the oil and the cellulose in the transformer, electrostatic charges appear. The charges of one polarity are carried in the oil, and the charges of the opposite polarity remain captured in the barrier that is formed by the internal structure of the transformer. The accruing of a certain amount of charge leads to discharges along the surface of the solid insulation and therefore to its partial damage. Ultimately, this can lead to the damage of the whole insulation system of the transformer by its breakdown. At present, the mineral oils are used as the main liquid insulating medium because of their good electrical insulating and cooling properties. On the other side, there is a high environmental burden for their operation and maintenance as well as the subsequent disposal of the discarded oil. The natural esters may be used as a replacement for the mineral oil. They go well with the environment, they are biodegradable and in case of the transformer malfunction, its disposal costs less money.This paper presents the results of the experiments of electrostatic charging of the mineral oils and natural esters and their comparison. The charging process in the transformer is modelled using a metal cylindrical container with a forced flow of oil using a controlled rotating circular disc from a hardened paper. The results indicate that increasing intensity of friction, increases the electrical charge, which is generated at the interface of the solid phase and the liquid. In these experiments two types of mineral oils were studied. For comparison, two types of natural esters (sunflower and colza oils) were selected and used in the same experiments. The charging of the oils was examined at various temperatures ranging from 25 °C up to 70 °C.  相似文献   

4.
Diacylglycerol (DAG) rich oils have an organoleptic property like that of regular edible oils, but these oils do not tend to be accumulated as fat. Palm oil ranks first in the world in terms of edible oil production owing to its low cost. The aim of this study was to propose a new methodology to produce diacylglycerol by hydrolysis of palm oil using Lipozyme RM IM commercial lipase as a catalyst under ultrasound irradiation. The reactions were carried out at 55 °C with two different methods. First, the reaction system was exposed to ultrasonic waves for the whole reaction time, which led to enzymatic inactivation and water evaporation. Ultrasound was then used to promote emulsification of the water/oil system before the hydrolysis reaction, avoiding contact between the probe and the enzymes. An experimental design was used to optimize the ultrasound-related parameters and maximize the hydrolysis rate, and in these conditions, with a change in equilibrium, DAG production was evaluated.Better reaction conditions were achieved for the second method: 11.20 wt.% (water + oil mass) water content, 1.36 wt.% (water + oil mass) enzyme load, 12 h of reaction time, 1.2 min and 200 W of exposure to ultrasound. In these conditions diacylglycerol yield was 34.17 wt.%.  相似文献   

5.
This paper suggests a new ultrasonic-based enhanced oil recovery (EOR) model for application in oil field reservoirs. The model is modular and consists of an acoustic module and a heat transfer module, where the heat distribution is updated when the temperature rise exceeds 1 °C. The model also considers the main EOR parameters which includes both the geophysical (i.e., porosity, permeability, temperature rise, and fluid viscosity) and acoustical (e.g., acoustic penetration and pressure distribution in various fluids and mediums) properties of the wells. Extended experiments were performed using powerful ultrasonic waves which were applied for different kind of oils & oil saturated core samples. The corresponding results showed a good matching with those obtained from simulations, validating the suggested model to some extent. Hence, a good recovery rate of around 88.2% of original oil in place (OOIP) was obtained after 30 min of continuous generation of ultrasonic waves. This leads to consider the ultrasonic-based EOR as another tangible solution for EOR. This claim is supported further by considering several injection wells where the simulation results indicate that with four (4) injection wells; the recovery rate may increase up-to 96.7% of OOIP. This leads to claim the high potential of ultrasonic-based EOR as compared to the conventional methods. Following this study, the paper also proposes a large scale ultrasonic-based EOR hardware system for installation in oil fields.  相似文献   

6.
利用FS920荧光光谱仪测量42个油样(包括36个纯植物油样,3个调和油样和3个混合油样)的荧光光谱,并对其数据矩阵(EEMs)进行归一化处理,确定了植物油特征激发波长及矩阵分析模型。综合分析植物油在特定范围内(激发波长为250~550 nm,发射波长为260~750 nm)的等高线光谱图和特征发射谱线图,将植物油划分为三类;将矩阵分析模型应用于纯植物油鉴别,分类正确率100%;为验证矩阵分析的定量判别能力,对三种混合油样进行分析,得到接近实际配比的分析结果;对市售三种调和油样本进行分析,得出调和油以大豆和菜籽油为基底的结论。通过对植物油荧光光谱的图谱特征和其矩阵模型的分析,证实荧光光谱技术和矩阵分析法对植物油进行分析和种类鉴别的有效性。  相似文献   

7.
In the present study, heavy oil viscosity reduction in Daqing oil field was investigated by using an ultrasonic static mixer. The influence of the ultrasonic power on the viscosity reduction rate was investigated and the optimal technological conditions were determined for the ultrasonic treatment. The mechanism for ultrasonic viscosity reduction was analyzed. The flow characteristics of heavy oil in the mixer under the effect of cavitation were investigated using numerical modeling, and energy consumptions were calculated during the ultrasonic treatment and vis-breaking processes. The experimental results indicated that the ultrasonic power made the largest impact on the viscosity reduction rate, followed by the reaction time and temperature. The highest viscosity reduction rate was 57.34%. Vacuole was migrated from the axis to the wall along the fluid, accelerating the two-phase transmission and enhancing the radial flow of the fluid, which significantly improved the ultrasonic viscosity reduction. Compared to the vis-breaking process, the energy consumption of ultrasonic treatment process was 43.03% lower when dealing with the same quality heavy oil. The optimal process conditions were found to be as follows: ultrasonic power of 1.8 kW, reaction time of 45 min and reaction temperature of 360 °C. The dissociation of the molecules of heavy oil after ultrasonication has been checked. After being kept at room temperature 12 days, some light components were produced by the cavitation cracking, so the viscosity of the residual oil could not return to that of the original residual oil, which meant that the “cage effect” was not reformed.  相似文献   

8.
Separating produced water is a key part of production processing for most crude oils. It is required for quality reasons, and to avoid unnecessary transportation costs and prevent pipework corrosion rates caused by soluble salts present in the water. A complicating factor is that water is often present in crude oil in the form of emulsions. Experiments were performed to evaluate the performance of ultrasonic fields in demulsifying crude oil emulsions using novel pipe-form equipment. A horn-type piezoelectric ultrasonic transducer with a frequency of 20 kHz and power ranging from 80 W to 1000 W was used for experimental purposes. The influences of the intensity of ultrasonic fields, ultrasonic irradiation time, and the initial water content of crude oils were evaluated to establish the rate of water segregation from oil. The experiments applied ultrasonic-field intensities of 0.25 W/cm3, 0.5 W/cm3, 0.75 W/cm3 and 1 W/cm3 to synthetic emulsions with 10%, 15%, 20%, and 25% of the water in crude oil. Crude oil demulsification occurred for each ultrasonic field intensity tested for all the samples tested. Function β involving adhesion coefficients was expressed in terms of wave-field intensity and initial concentration of water in each of the three crude oil samples tested. The experiments demonstrated that despite the absence of any chemical demulsifier involved, water separation caused by applying ultrasonic fields was effective and occurred rapidly. As the intensity of the ultrasonic field applied increased, the amount of water segregated from crude oil also increased. Subjected to constant field intensity, higher initial water cuts (up to 15% or so) in the crude oil samples and higher ultrasonic irradiation times, resulted in greater segregation of water from crude oil in percentage terms. However, in samples with initial water cuts of 20+% long irradiation times (~5 min), resulted in a decline in water separation compared to 2-min tests. Ultrasonic field treatments offer commercially-viable and environmentally-friendly alternatives to treatments using chemical demulsifiers as they reduce desalination requirements of wastewater.  相似文献   

9.
The primary objective of the present study was to investigate the effectiveness of ultrasonic treatment time on the particle size, molecular weight, microstructure and solubility of milk fat globule membrane (rich in phospholipid, MPL) and milk protein concentrate (MPC). The mimicking human fat emulsions were prepared using modified proteins and compound vegetable oil and the structural, emulsifying properties and encapsulation efficiency of emulsions were evaluated. After ultrasonic treatment, the cavitation caused particle size decreased and structure change of both MPL and MPC, resulting in the enhancement of protein solubility. While, there was no significant change in molecular weight. Modified proteins by ultrasonic may cause a reduction in particle size and an improvement in emulsifying stability and encapsulation efficiency of emulsions. The optimal ultrasonic time to improve functional properties of MPL emulsion and MPC emulsion were 3 min and 6 min, respectively. The emulsifying stability of MPL emulsion was superior to MPC emulsion, which indicated that MPL is more suitable as membrane material to simulate human fat. Therefore, the obtained results can provide basis for quality control of infant formula.  相似文献   

10.
《Ultrasonics sonochemistry》2014,21(4):1585-1591
This paper investigates the production of biodiesel from palm oil using a combined mechanical stirred and ultrasonic reactor (MS–US). The incorporation of mechanical stirring into the ultrasonic reactor explored the further improvement the transesterification of palm oil. Initial reaction rate values were 54.1, 142.9 and 164.2 mmol/L min for the mechanical-stirred (MS), ultrasonic (US) and MS–US reactors, respectively. Suitable methanol to oil molar ratio and the catalyst loading values were found to be 6 and 1 of oil, respectively. The effect of ultrasonic operating parameters; i.e. frequency, location, and number of transducer, has been investigated. Based on the conversion yield at the reactor outlet after 1 h, the number of transducers showed a relevant role in the reaction rate. Frequency and transducer location would appear to have no significant effect. The properties of the obtained biodiesel (density, viscosity, pour point, and flash point) satisfy the ASTM standard. The combined MS–US reactors improved the reaction rate affording the methyl esters in higher yield.  相似文献   

11.
Epoxy resins made from vegetable oils are an alternative to synthesize epoxy resins from renewable sources. Tung oil is rich in α -eleostearic fatty acid, which contains three double bonds producing epoxy resins with up to three epoxy groups per fatty acid. This work studied the production of tung oil epoxy resin using hydrogen peroxide as an oxidizing agent and acetic and formic acid as percarboxylic acid precursors, applying low frequency high power ultrasound. This study evaluated the effects of ultrasound power density, hydrogen peroxide concentration, acetic acid concentration, and formic acid concentration on the yield into epoxy resin, selectivity, and by-products formation. Application of ultrasound was carried out using a 19 kHz probe ultrasound (horn ultrasound) with a 1.3 cm diameter titanium probe, 500 W nominal power, 2940 W L−1 maximum effective power density applied to the reaction mixture. Ultrasound technology yielded up to 85% of epoxy resin in 3 h of reaction. The use of formic acid resulted in a slightly lower oil conversion than acetic acid but with a much higher selectivity towards epoxidized tung oil. However, using acetic acid resulted in the production of high-value by-products, such as 2-heptenal and 2,4-nonadienal. The ultrasound-assisted epoxidation showed to be particularly efficient when applied to oils containing conjugated double-bonds.  相似文献   

12.
Synthesis of methyl and ethyl esters of fatty acids via transesterification of vegetable oils in supercritical methanol and ethanol is carried out on a pilot installation with a continuous flow reactor. The corresponding procedures are described, and the results are analyzed. The effect of preliminary ultrasonic treatment of the initial mixture on the product yield is studied, and the correlation between the stability of the obtained emulsions and the composition of the initial mixture, as well as the intensity of the ultrasonic treatment, are determined. The isobaric heat capacity of the supercritical alcohol (methanol, ethanol) — vegetable oil mixtures is measured.  相似文献   

13.
In the present study, ultrasound was used to remove the residual solvent from the fragrant oil of red pepper seed obtained by subcritical propane extraction. The physical and chemical characteristics, particularly the volatile flavor compounds present of the oil before and after ultrasound-assisted desolventizing were comprehensively analyzed to determine the effect of the desolventizing process on product quality. The results showed that the maximum loss of residual solvent was achieved at a temperature of 90 °C maintained for 70 min with ultrasound applied during the entire process. After this treatment only a small amount of solvent (2.3% based on the total residual solvent originally present) remained in the oil. Although it was hypothesized that ultrasound treatment could result in the loss of volatile components, the analytical results showed no obvious reduction in the components associated with the typical aroma of the oil. After ultrasonic treatment, the oil also had good oxidation stability and quality. Additionally, after ultrasonic desolventizing, the oil samples were more suitable for cooking because they could more effectively minimize oxidation. Thus, these results demonstrate that this new ultrasonic technique is an effective and efficient method for removing the solvent remaining in fragrant oil after subcritical propane extraction.  相似文献   

14.
PurposeThis study aimed to assess the effect of echo spacing in transverse magnetization (T2) signal decay of gel and fat (oil) samples. Additionally, we assess the feasibility of using spin coupling as a determinant of fat content.MethodsPhantoms of known T2 values, as well as vegetable oil phantoms, were scanned at 1.5 T scanner with a multi echo FSE sequence of variable echo spacing above and below the empirical threshold of 20 ms for echo train signal modulation (6.7, 13.6, 26.8, and 40 ms). T2 values were calculated from monoexponential fitting of the data. Relative signal loss between the four acquisitions of different echo spacing was calculated.ResultsAgreement in the T2 values of water gel phantom was observed in all acquisitions as opposed to fat phantom (oil) samples. Relative differences in signal intensity between two successive sequences of different echo spacing on composite fat/water regions of interest was found to be linearly correlated to fat fraction of the ROI.ConclusionThe sample specific degree of signal loss that was observed between different fat samples (vegetable oils) can be attributed to the composition of each sample in J coupled fat components. Hence, spin coupling may be used as a determinant of fat content.  相似文献   

15.
The present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading, reactive oxygen species, and different types of emulsification and formation of radicals, formation as well as extraction of formed by-products are systematically reviewed. Among all types of HC reactors, vortex diode and single hole orifices revealed more than 95 % desulfurization yield and a 20 % viscosity reduction in heavy oil upgrading, while multi-hole orifice (100 holes) and slit Venturi allowed obtaining the best biodiesel production processes in terms of high (%) yield, low cost of treatment, and short processing time (5 min; 99 % biodiesel; 4.80 USD/m3). On the other hand, the acoustic cavitation devices are likely to be the most effective in biodiesel production based on ultrasonic bath (90 min; 95 %; 6.7 $/m3) and desulfurization treatment based on ultrasonic transducers (15 min; 98.3 % desulfurization; 10.8 $/m3). The implementation of HC-based processes reveals to be the most cost-effective method over acoustic cavitation-based devices. Finally, by reviewing the ongoing applications and development works, the limitations and challenges for further research are addressed emphasizing the cleaner production and guidelines for future scientists to assure obtaining comprehensive data useful for the research community.  相似文献   

16.
This study analyzes the effects of ultrasonic waves on the drying kinetics of Tremella fuciformis during microwave vacuum drying. The physicochemical properties and structural characteristics of T. fuciformis polysaccharides (TFPs) were studied by drying tremella samples using hot air drying (HAD), microwave vacuum drying, ultrasonic pretreatments with microwave vacuum drying (US + MVD), and air-borne ultrasonic pretreatments combined with microwave vacuum drying (USMVD) under acoustic energy densities of 0.14, 0.28, and 0.42 W/mL. The results showed that USMVD and US + MVD accelerated the mass transfer process of T. fuciformis. Compared with HAD treatment, TFP samples obtained by USMVD and US + MVD had a reduced molecular weight to a certain extent, and they had stronger shear thinning ability. In addition, USMVD-TFPs at 0.42 W/mL retained higher total sugar, reducing sugar, and uronic acid, and the degree of reduction in the monosaccharide component content was small.  相似文献   

17.
This paper made a qualitative identification of ordinary vegetable oil and waste cooking oil based on Raman spectroscopy. Raman spectra of 73 samples of four varieties oil were acquired through the portable Raman spectrometer. Then, a partial least squares discriminant analysis (PLS‐DA) model and a discrimination model based on characteristic wave band ratio were established. A classification variable model of olive oil, peanut oil, corn oil and waste cooking oil that was established through the PLS‐DA model could identify waste cooking oil accurately from vegetable oils. The identification model established based on selection of waveband characteristics and intensity ratio of different Raman spectrum characteristic peaks could distinguish vegetable oils from waste cooking oil accurately. Research results demonstrated that both ratio method and PLS‐DA could identify waste cooking oil samples accurately. The identification model based on characteristic waveband ratio is simpler than PLS‐DA model. It is widely applicable to identification of waste cooking oil. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Characterization of Edible Oils Using Total Luminescence Spectroscopy   总被引:1,自引:0,他引:1  
Total luminescence spectroscopy was used to characterise and differentiate edible oils and additionally, to control one of the major problems in the oil quality--the effect of thermal and photo-oxidation. We studied several vegetable oils available on the Polish market, including soybean, rapeseed, corn, sunflower, linseed and olive oils. Total luminescence spectroscopy measurements were performed using two different sample geometries: front-face for pure oil samples and right-angle for transparent samples, diluted in n-hexane. All the samples studied as n-hexane solutions exhibit an intense peak, which appears at 320 nm in emission and 290 nm in excitation, attributed to tocopherols. Some of the oils exhibit a second long-wavelength peak, appearing at 670 nm in emission and 405 nm in excitation, belonging to pigments of the chlorophyll group. Additional bands were present in the intermediate range of excitation and emission wavelengths; however, the compounds responsible for this emission were not identified. The front-face spectra for pure oils included chlorophyll peaks for most samples, and some additional peaks in the intermediate range, while the tocopherol peaks were comparatively less intense. The results presented demonstrate the capability of the total luminescence techniques to characterise and differentiate vegetable oil products, and additionally, to characterize the effect of thermal and photo-oxidation on such products. In the photo-oxidation experiments, special attention was paid to possible involvement of singlet oxygen. Experiments were done to monitor the highly specific O2(1delta(g)) --> O2(3sigma(g)-) singlet oxygen emission at 1270 nm. Thus, total luminescence spectroscopy presents an interesting alternative to time-consuming and expensive techniques such as gas or liquid chromatography, mass spectrometry and other methods requiring wet chemistry steps.  相似文献   

19.
The effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips were investigated. The water medium system (distilled water and 5% NaCl osmotic solution) and oil medium system (90 °C) were designed with different power levels of ultrasound to simulate the ultrasonic conditions. Results showed that the changes of moisture content, water loss, solid gain and dielectric properties of potato slices were facilitated by the ultrasonic treatment. LF-NMR analysis showed the binding force between the moisture and structure in the material was significantly (p < 0.05) weakened. The changes become greater with the increase of ultrasonic power levels. Microscopic channels and disruptions were induced on the microstructure by the ultrasonic treatment. The effective moisture diffusivity of vacuum fried (VF) potato chips was increased by about 56.2%-67.0% and 53.9% with the combination of microwave energy and the ultrasonic pre-treatment in water and oil medium simulated system, respectively. The oil uptake, hardness, shrinkage, total color change and water activity of vacuum fried samples were significantly (p < 0.05) decreased by the assist of microwave energy combined ultrasonic pre-treatment.  相似文献   

20.
The development of green and sustainable extraction technologies for various naturally active biomaterials is gaining increasing attention due to their environmentally friendly advantages. In this work, the ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using different green solvents was presented. Ethyl lactate, limonene, soybean oil, and sunflower oil were used in place of traditional organic solvents. Ethyl lactate showed similar performance to organic solvents, whereas limonene and vegetable oil exhibited higher selectivity for fucoxanthin. Moreover, the effects of various extraction factors, including liquid/solid ratio, extraction time, extraction temperature, as well as amplitude were studied. The optimal conditions were optimized as follows: liquid/solid ratio, 40 mL/g; extraction time, 27 min; extraction temperature, 75 ℃; amplitude, 53%; and solvent, ethyl lactate. Optimal model of second-order kinetic parameters (rate constant, equilibrium concentration, and initial extraction rate) was successfully developed for describing the dynamic ultrasonic extraction process under different operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号