首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7341篇
  免费   1358篇
  国内免费   2997篇
化学   3620篇
晶体学   79篇
力学   475篇
综合类   307篇
数学   2400篇
物理学   4815篇
  2024年   64篇
  2023年   278篇
  2022年   317篇
  2021年   344篇
  2020年   269篇
  2019年   235篇
  2018年   173篇
  2017年   291篇
  2016年   264篇
  2015年   283篇
  2014年   553篇
  2013年   495篇
  2012年   607篇
  2011年   610篇
  2010年   446篇
  2009年   524篇
  2008年   602篇
  2007年   506篇
  2006年   538篇
  2005年   516篇
  2004年   512篇
  2003年   381篇
  2002年   333篇
  2001年   317篇
  2000年   241篇
  1999年   212篇
  1998年   220篇
  1997年   191篇
  1996年   217篇
  1995年   184篇
  1994年   198篇
  1993年   150篇
  1992年   156篇
  1991年   137篇
  1990年   117篇
  1989年   106篇
  1988年   31篇
  1987年   30篇
  1986年   21篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   8篇
  1981年   1篇
排序方式: 共有10000条查询结果,搜索用时 37 毫秒
1.
数形结合的本质就是将直观的图形与抽象的语言符号相结合,实现形象思维与抽象思维的融合,让复杂、抽象的问题变得直观、简单化.在初中数学教学的各个环节,有效地渗透数形结合思想,能激发学生思维的灵活性与创造性.本文中,从数量变化规律、图形变化规律与数形结合思想的实际应用三方面着手,具体谈谈数形结合思想在教学中的应用.  相似文献   
2.
量子自旋液体是最近几年刚被人们证实除铁磁体、反铁磁体之外的第三种磁性类型,因其有望解释高温超导的运行机制、改变计算机硬盘信息存储方式而在物理、材料等领域备受关注。自旋阻挫作为量子自旋液体的最小单元可能是解开量子自旋液体诸多问题的钥匙,所以在磁学、电学研究领域再一次成为人们研究的热点。基于文献报道的三核铜配合物[Cu3(μ3-OH)(μ-OPz)3(NO3)2(H2O)2]·CH3OH(1),我们合成了三维金属有机框架配合物{[Ag(HOPz)Cu3(μ3-OH)(NO3)3(OPz)2Ag(NO3)]·6H2O}n(2)(HOPz=甲基(2-吡嗪基)酮肟),并从自旋阻挫的角度对二者磁性质进行对比和详细分析。磁化率数据表明自旋间有很强的反铁磁相互作用和反对称交换。通过包含各向同性和反对称交换的哈密顿算符对两者磁学数据进行拟合并研究其磁构关系,所获最佳拟合参数为:配合物1:Jav=-426 cm^-1,g⊥=1.83,g∥=2.00;配合物2:Jav=-401 cm^-1,g⊥=1.85,g∥=2.00。  相似文献   
3.
罗建宇 《数学通报》2022,(10):20-24
1引言《现代汉语词典》(第7版)中关于“整体”的解释为:“整个集体或整个事物的全部(对各个成员或各个部分而言)”[1].在哲学范畴,联系是唯物辩证法的起点,生活中所有事物都是紧密联系的.数学是研究数量关系和空间形式的一门科学,对现实世界的抽象是数学的来源.关于数学的整体性,有不少经典的表述,如著名数学家约瑟夫·傅里叶曾说:“Mathematics compares the most diverse phenomena,and discovers the most secret analogies which unite them.”(数学能从事物的个性之中寻求事物的共性特征.)普遍联系的原理走向具体化与深层次的体现之一就是系统观的形成,而系统论最本质的特征就是整体性.  相似文献   
4.
熵如力、能量和动量一样是物理学中一个重要概念,若能用一种通俗易懂的方法设计熵的教学,对文科物理的教学有重要意义.为此本文提出了一种通俗的熵的教法,这一教法不需要学生学习热力学第二定律也可以建立熵的概念.具体教学设计如下:通过日常生活例子引入熵的概念(也就是玻尔兹曼熵),设计两个例子让学生会计算熵,通过具体问题的讨论让学生充分理解熵的意义,通过一个实例由玻尔兹曼熵引入克劳修斯熵公式,设计一个演示实验强化教学效果,将熵与环境保护联系起来融入人文情怀,最后还强调了熵计算的不同层次.教学设计完全采用基于问题学习(PBL)的教学模式.  相似文献   
5.
目前,我国乐器制作行业在古筝面板用木材等级的筛选上主要依赖于技师主观评判,但此法缺少科学理论的依据,效率低,客观性及出材率的提高等方面受到限制,无法满足乐器市场的大量需求。实现古筝面板用木材快速、智能化的分级工作是一个急需解决的课题。近红外光谱非常适用于测量含氢的有机物质。古筝面板木材主要化学成分的化学键均由含氢基团组成,不同等级板材的化学成分存在差异,这些差异反映在近红外光谱中,为判断木材等级提供了可能。同时卷积神经网络对非线性数据具有较强的特征提取能力,所以提出一种应用卷积神经网络模型对光谱数据进行分析的方法,进而判别木材的等级。应用了Savitzky Golay一阶、二阶微分两种预处理方法和核主成分分析、连续投影算法两种数据压缩方法,通过所设计的卷积神经网络模型以样本识别准确率和模型构建过程中的损失值作为判定指标选出最佳预处理和数据压缩方法。为了提高模型提取分析光谱数据的能力和避免过拟合现象,应用了多通道卷积核、批量归一化和early stopping策略,将通过两层卷积层提取的特征信息送入全连接层,从而充分提取剩余信息,通过Softmax函数获得板材的最终预测等级,从而确定了最终模型。最终Savitzky Golay一阶微分和核主成分分析为最佳数据处理方法,同时得出用于区分不同等级的古筝面板用木材的主要关键谱带,分别为1 163~1 243, 1 346~1 375和1 525~1 584 nm。将该模型应用于测试集样本,古筝面板用木材的等级识别准确率为95.5%。实验结果表明所提出的方法可以高效地处理光谱数据,有效识别区分不同等级的古筝面板用木材的关键特征,从而为广阔的乐器市场提供一定的技术支持。  相似文献   
6.
综述了山东大学威海校区原子核物理研究团队在原子核精细谱学、核天体物理、探测器研制和高能核物理等方向开展的研究工作及最新进展;尤其重点介绍了$A\sim 110$核区原子核的形状共存和带交叉延迟,“订书机”和“雨伞”模式转动带,碳氮氧循环过程中关键核反应的测量进展,中子星参数化的状态方程及双中子星并合引力波研究,带电粒子探测器的设计与制作,相对论重离子碰撞物理中量子输运理论和高阶反常输运等研究工作,并展望了下一步的工作重点。  相似文献   
7.
假设^13C是单粒子的2p态的结构,用Glauber多重散射理论研究了入射能量为1GeV的质子在^13C上的弹性散射,得到了与实验符合得很好的理论结果。这说明^13C可能存在着一个类晕的中子皮。  相似文献   
8.
本文对反应堆压力容器紧急安注时的流动与传热特性在1/10的模型上进行了流动可视化、局部传热系数以及混合函数的试验研究。针对三个热冲击敏感区域的部分测点,比较了环腔流速为0.5m/s、安注流速为1~30 m/s时不同含气率对下降环腔内流动与传热特性的影响,得出并分析了不同测点传热系数、混合函数的变化规律。研究结果表明:随着含气率增大,安注流体与环腔流体的混合增强;下降环腔内的含气率对小安注流速时的流动与传热影响显著,而对大安注流速时影响较小。  相似文献   
9.
谢金来 《应用声学》1997,16(6):13-13
全面核禁试条约第三届全球次声监测工作研讨会于1997年8月25至28日在美国新墨西哥州西班牙式的古城圣菲举行.会议云集了中国、美国、法国、俄罗斯、阿根廷、澳大利亚等5大洲12个国家61位活跃在次声学科领域的研究人员、政府官员以及联合国临时技术秘书等要员,围绕着全球次声监测中的7个专题进行报告和讨论,它们依次为:欢声阵的设计和信号处理,次声阵性能和减噪设备;法国欢声监测系统,国际次声监测系统60个站网的能力模型,对流层风对长距离次声传播的影响,高空风对次声同性能的影响,渗透管的特性以及对次声监测的减噪作用,欢声减噪器;爆炸检测,声遥感技术对爆炸源能量的估计,小当量地下,地面和近地面爆炸远距离声传  相似文献   
10.
通过建立具有平面近横向各向异性场的非晶态合金薄带及膜的磁畴结构模型,利用线性化Maxwell方程组及Landau-Lifshitz方程,推出了在高频交变磁场及外加面内轴向直流磁场Hex作用下的铁磁材料的与取向相关的磁导率表达式,得到了对方位角平均的相对磁导率及阻抗的计算式,导出了磁导率与张量磁化率分量间的关系,对材料磁导率的实部及虚部随Hex的变化进行了计算,并给出了对应的磁谱图.建立的磁导率与外磁场的理论关系可将Panina及Kraus给出的理论结果统一起来. 关键词: 非晶态合金薄带及膜 取向相关磁导率 GMI效应理论与计算 近横向各向异性场  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号