首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
  国内免费   14篇
化学   54篇
力学   6篇
数学   3篇
物理学   20篇
  2023年   7篇
  2022年   7篇
  2021年   13篇
  2020年   5篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1988年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
1.
The utilization of a single-atom catalyst to break C−C bonds merges the merits of homogeneous and heterogeneous catalysis and presents an intriguing pathway for obtaining high-value-added products. Herein, a mild, selective, and sustainable oxidative cleavage of alkene to form oxime ether or nitrile was achieved by using atomically dispersed cobalt catalyst and hydroxylamine. Diversified substrate patterns, including symmetrical and unsymmetrical alkenes, di- and tri-substituted alkenes, and late-stage functionalization of complex alkenes were demonstrated. The reaction was successfully scaled up and demonstrated good performance in recycling experiments. The hot filtration test, catalyst poisoning and radical scavenger experiment, time kinetics, and studies on the reaction intermediate collectively pointed to a radical mechanism with cobalt/acid/O2 promoted C−C bond cleavage as the key step.  相似文献   
2.
An electron-deficient [CpERhCl2]2 catalyzed annulation of N-pentafluorophenylbenzamides with internal alkynes was successfully established under mild reaction conditions, with the assistance of Lewis acid silver salt. Particularly, electron-deficient benzamide substrates were smoothly transformed into the desired products in this catalytic system. The catalytic system showed a broad tolerance for different substituents on the aromatic rings or aryl, alkyl-substituted alkynes.  相似文献   
3.
g-C3N4 have been widely used in the fields of photocatalytic hydrogen production,photocatalytic degradation of dyes and oxidative degradation of toxic gases due to their excellent performance.It has attracted extensive attention in recent years due to its highly efficient photocatalytic capacity of hydrogen generation,water oxidation,carbon dioxide reduction and degradation of organic pollutants.Because of the abundant carbon and nitrogen composition of the earth,large-scale production and industrial applications of this material are possible.The modification of this material makes its performance more excellent so that this new material can obtain a steady stream of vitality.These outstanding works have become important materials and milestones on the road to mankind's photocatalytic hydrogen production.This review will begin with the basic idea of designing,synthesizing and improving g-C3N4 based photocatalytic materials,and introduce the latest development of g-C3N4 photocatalysts in hydrogen production from four aspects of controlling the carbon/nitrogen ratio,morphology,element doping and heterojunction structure of g-C3N4 materials.  相似文献   
4.
A visible-light-driven radical silylative cyclization of aza-1,6-dienes featuring an acrylonitrile or acrylate moiety and an electron-neutral olefin was developed, which allows for stereoselective synthesis of densely functionalized piperidines in a highly atom-economical manner. Depending on the substitution pattern of the electron-neutral olefin, poor-to-excellent diastereoselectivity was observed. It was suggested that the 6-exo-trig cyclization was initiated by a chemoselective addition of silyl radical toward electron-deficient olefin and the geometry of the remaining olefin is closely associated with the cis-stereoselectivity. DFT calculations supported that a transition state with a cyano group locating at the axial position of the forming piperidine ring might be involved, in which either the increase of 1,3-diaxial repulsion or the lack of hydrogen bonding interaction will diminish diastereoselectivity.  相似文献   
5.
The convenient cross-coupling of sp2 or sp3 carbons with a specific boron vertex on carborane cage represents significant synthetic values and insurmountable challenges. In this work, we report an Rh-catalyzed reaction between o-carborane and N-acyl-glutarimides to construct various Bcage−C bonds. Under the optimized condition, the removable imine directing group (DG) leads to B(3)− or B(3,6)−C couplings, while the pyridyl DG leads to B(3,5)−Ar coupling. In particular, an unexpected rearrangement of amide reagent is observed in pyridyl directed B(4)−C(sp3) formation. This scalable protocol has many advantages, including easy access, the use of cheap and widely available coupling agents, no requirement of an external ligand, base or oxidant, high efficiency, and a broad substrate scope. Leveraging the RhI dimer and twisted amides, this method enables straightforward access to diversely substituted and therapeutically important carborane derivatives at boron site, and provides a highly valuable vista for carborane-based drug screening.  相似文献   
6.
Photocatalytic technology can effectively solve the problem of increasingly serious water pollution, the core of which is the design and synthesis of highly efficient photocatalytic materials. Semiconductor photocatalysts are currently the most widely used photocatalysts. Among these is graphitic carbon nitride (g-C3N4), which has great potential in environment management and the development of new energy owing to its low cost, easy availability, unique band structure, and good thermal stability. However, the photocatalytic activity of g-C3N4 remains low because of problems such as wide bandgap, weakly absorb visible light, and the high recombination rate of photogenerated carriers. Among various modification strategies, doping modification is an effective and simple method used to improve the photocatalytic performance of materials. In this work, Cu/g-C3N4 photocatalysts were successfully prepared by incorporating Cu2+ into g-C3N4 to further optimize photocatalytic performance. At the same time, the structure, morphology, and optical and photoelectric properties of Cu/g-C3N4 photocatalysts were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectric tests. XRD and XPS were used to ensure that the prepared photocatalysts were Cu/g-C3N4 and the valence state of Cu was in the form of Cu2+. Under visible light irradiation, the photocatalytic activity of Cu/g-C3N4 and pure g-C3N4 photocatalysts were investigated in terms of the degradation of RhB and CIP by comparing the amount of introduced copper ions. The experimental results showed that the degradation ability of Cu/g-C3N4 photocatalysts was stronger than that of pure g-C3N4. The N2 adsorption-desorption isotherms of g-C3N4 and Cu/g-C3N4 demonstrated that the introduction of copper had little effect on the microstructure of g-C3N4. The small difference in specific surface area indicates that the enhanced photocatalytic activity may be attributed to the effective separation of photogenerated carriers. Therefore, the enhanced photocatalytic degradation of RhB and CIP over Cu/g-C3N4 may be due to the reduction of carrier recombination rate by copper. The photoelectric test showed that the incorporation of Cu2+ into g-C3N4 could reduce the electron-hole recombination rate of g-C3N4 and accelerate the separation of electron-hole pairs, thus enhancing the photocatalytic activity of Cu/g-C3N4. Free radical trapping experiments and electron spin resonance indicated that the synergistic effect of superoxide radicals (O2•−), hydroxyl radicals (•OH) and holes could increase the photocatalytic activity of Cu/g-C3N4 materials.  相似文献   
7.
8.
选用非质子型有机溶剂聚乙二醇二甲醚(NHD)与N, N-二甲基乙酰胺(DMAC), 分别与BmimFeCl4复配, 构建了BmimFeCl4/NHD和BmimFeCl4/DMAC复合铁基离子液体体系. 考察了温度、 BmimFeCl4/溶剂的质量 比以及压力对CO2在复合铁基离子液体体系中溶解行为的影响. 结果表明, 高压低温的吸收条件更利于CO2 的溶解, 当BmimFeCl4/DMAC质量比为7∶3时, CO2在BmimFeCl4/DMAC复合体系中的亨利系数为0.9181 MPa·L·mol-1, 低于同等条件下BmimFeCl4/NHD体系的亨利系数. 在常压、 363.2 K条件下进行再生, 经5次循环后, CO2在BmimFeCl4/NHD和BmimFeCl4/DMAC中的溶解度分别为初次吸收量的92.53%和99.04%. 傅里叶变换红外光谱(FTIR)结果表明, 铁基离子液体复配体系吸收CO2为物理吸收过程. 密度泛函理论(DFT)计算与IRI分析的结果表明, 在复配DMAC的体系中, CO2更倾向与阳离子和溶剂分子作用, 而在复配NHD的体系中, CO2则更容易与阴离子和溶剂分子作用.  相似文献   
9.
Hu  Yuanyuan  Ji  Wenxuan  Qiao  Jinjuan  Li  Heng  Zhang  Yun  Luo  Jun 《Journal of fluorescence》2021,31(5):1379-1392
Journal of Fluorescence - Although carbon dots (CDs) as fluorescent sensors have been widely exploited, multi-component detection using CDs without tedious surface modification is always a...  相似文献   
10.
Two-dimensional(2D)magnets provide an ideal platform to explore new physical phenomena in fundamental magnetism and to realize the miniaturization of magnetic devices.The study on its domain structure evolution with thickness is of great significance for better understanding the 2D magnetism.Here,we investigate the magnetization reversal and domain structure evolution in 2D ferromagnet Fe3GeTe2(FGT)with a thickness range of 11.2-112 nm.Three types of domain structures and their corresponding hysteresis loops can be obtained.The magnetic domain varies from a circular domain via a dendritic domain to a labyrinthian domain with increasing FGT thickness,which is accompanied by a transition from squared to slanted hysteresis loops with reduced coercive fields.These features can be ascribed to the total energy changes from exchange interaction-dominated to dipolar interaction-dominated with increasing FGT thickness.Our finding not only enriches the fundamental magnetism,but also paves a way towards spintronics based on 2D magnet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号