首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
物理学   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Photovoltaic response in the heterojunction of La1-x SrxMnO3/SrNby Ti1-yO3 (LSMO/SNTO) is analyzed theoretically based on the drift-diffusion model. It is found that the decrease of acceptor concentration in the La1-xSrxMnO3 layer of hereto junction can increase the peak value of photovoltaic signal and the speed of photovoltaic response, whereas the changing of donor concentration in the SrNby Ti1-yO3 layer has no such evident effect. Furthermore, the result also indicates that the modulation of Sr doping in La1-xSrxMnO3 is an effective method to accommodate the sensitivity and the speed of photovoltaic response for LSMO/SNTO photoelectric devices.  相似文献   
2.
Hongbao Yao 《中国物理 B》2022,31(8):88106-088106
Photons with variable energy, high coherency, and switchable polarization provide an ideal tool-kits for exploring the cutting-edge scientific questions in the condensed matter physics and material sciences. Over decades, extensive researches in the sample fabrication and excitation have employed the photon as one of the important means to synthesize and explore the low-dimensional quantum materials. In this review, we firstly summarize the recent progresses of the state-of-the-art thin-film deposition methods using excimer pulsed laser, by which syntactic oxides with atomic-unit-cell-thick layers and extremely high crystalline quality can be programmatically fabricated. We demonstrate that the artificially engineered oxide quantum heterostructures exhibit the unexpected physical properties which are absent in their parent forms. Secondly, we highlight the recent work on probing the symmetry breaking at the surface/interface/interior and weak couplings among nanoscale ferroelectric domains using optical second harmonic generation. We clarify the current challenges in the in-situ characterizations under the external fields and large-scale imaging using optical second harmonic generation. The improvements in the sample quality and the non-contact detection technique further promote the understanding of the mechanism of the novel properties emerged at the interface and inspire the potential applications, such as the ferroelectric resistive memory and ultrahigh energy storage capacitors.  相似文献   
3.
The further development of traditional von Neumann-architecture computers is limited by the breaking of Moore’s law and the von Neumann bottleneck, which make them unsuitable for future high-performance artificial intelligence (AI)systems. Therefore, new computing paradigms are desperately needed. Inspired by the human brain, neuromorphic computing is proposed to realize AI while reducing power consumption. As one of the basic hardware units for neuromorphic computing, artificial synapses have recently aroused worldwide research interests. Among various electronic devices that mimic biological synapses, synaptic transistors show promising properties, such as the ability to perform signal transmission and learning simultaneously, allowing dynamic spatiotemporal information processing applications. In this article, we provide a review of recent advances in electrolyte-and ferroelectric-gated synaptic transistors. Their structures, materials,working mechanisms, advantages, and disadvantages will be presented. In addition, the challenges of developing advanced synaptic transistors are discussed.  相似文献   
4.
Strontium titanate(SrTiO3),which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV,holds great promise for ultraviolet(UV)photodetection.However,the response performance of the conventional SrTiO3-based photodetectors is limited by the large relative dielectric constant of the material,which reduces the internal electric field for electron-hole pair separation to form a current collected by electrodes.Recently,graphene/semiconductor hybrid photodetectors by van-der-Waals heteroepitaxy method demonstrate ultrahigh sensitivity,which is benefit from the interface junction architecture and then prolonged lifetime of photoexcited carriers.Here,a graphene/SrTiO3 interface-based photodetector is demonstrated with an ultrahigh responsivity of 1.2×106 A/W at the wavelength of 325 nm and~2.4×104 A/W at 261 nm.The corresponding response time is in the order of~ms.Compared with graphene/GaN interface junctionbased hybrid photodetectors,~2 orders of magnitude improvement of the ultrahigh responsivity originates from a gain mechanism which correlates with the large work function difference induced long photo-carrier lifetime as well as the low background carrier density.The performance of high responsivity and fast response speed facilitates SrTiO3 material for further efforts seeking practical applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号