首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   136篇
  国内免费   152篇
化学   323篇
晶体学   29篇
力学   91篇
综合类   27篇
数学   121篇
物理学   241篇
  2023年   14篇
  2022年   22篇
  2021年   17篇
  2020年   26篇
  2019年   25篇
  2018年   37篇
  2017年   24篇
  2016年   32篇
  2015年   39篇
  2014年   67篇
  2013年   37篇
  2012年   33篇
  2011年   30篇
  2010年   23篇
  2009年   30篇
  2008年   38篇
  2007年   31篇
  2006年   32篇
  2005年   29篇
  2004年   35篇
  2003年   19篇
  2002年   26篇
  2001年   15篇
  2000年   18篇
  1999年   14篇
  1998年   18篇
  1997年   11篇
  1996年   8篇
  1995年   10篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   9篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1981年   2篇
  1979年   2篇
  1977年   4篇
  1975年   1篇
  1965年   2篇
  1960年   1篇
排序方式: 共有832条查询结果,搜索用时 31 毫秒
1.
空气中的氮气由于其牢固的N≡N三键,不易被植物直接吸收。等离子体固氮为高效实现将氮分子(N2)转化为可吸收的含氮化合物(NOx,NH3等)提供了新途径。相比传统Haber-Bosch(H-B)工艺,等离子体技术可以使用间歇性可再生能源,成本低廉,并且理论能耗仅为H-B工艺的0.5倍,因而在固氮领域受到广泛关注。本篇综述首先阐述了等离子体在固氮应用上的优势,然后,介绍了等离子体固氮的反应原理以及其在固氮(用于NH3或NOx合成)领域的研究现状,并对比了当前已有的等离子体反应器类型及其固氮效果。最后,总结了等离子体固氮技术当前面临的挑战,并指出了该方向未来研究的重点。  相似文献   
2.
Zhengran Wang 《中国物理 B》2022,31(4):48202-048202
Excited-state double proton transfer (ESDPT) in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol (HYDRAVH2) ligand was studied by the density functional theory and time-dependent density functional theory method. The analysis of frontier molecular orbitals, infrared spectra, and non-covalent interactions have cross-validated that the asymmetric structure has an influence on the proton transfer, which makes the proton transfer ability of the two hydrogen protons different. The potential energy surfaces in both S0 and S1 states were scanned with varying O-H bond lengths. The results of potential energy surface analysis adequately proved that the HYDRAVH2 can undergo the ESDPT process in the S1 state and the double proton transfer process is a stepwise proton transfer mechanism. Our work can pave the way towards the design and synthesis of new molecules.  相似文献   
3.
中国科学院近代物理研究所正在进行国际首台45 GHz全铌三锡超导离子源FECR(Fourth Electron Cyclotron Resonance)磁体的研制,该离子源磁体线圈由六个铌三锡超导六极线圈和四个铌三锡超导螺线管线圈组成。由于单根超导线绕制异形六极线圈(非标准鞍型)技术难度大,且铌三锡超导性能对应力敏感,为了测试单个铌三锡六极线圈性能能否达到设计指标,基于铝合金壳层结构和Bladder-Key精确预紧技术,设计了镜像磁场约束结构。本工作主要阐述了运用ANSYS参数化设计编程对镜像磁场结构进行优化设计的过程和优化后的镜像磁场结构,确定了室温预应力大小,并给出了线圈经过室温预紧、冷却降温和加电励磁后的最大等效应力。进一步结合实际六极线圈制作公差(±0.1 mm),分析和评估了公差对镜像磁场结构中六极线圈预应力施加的影响。  相似文献   
4.
环糊精参与的过渡金属催化有机反应   总被引:1,自引:0,他引:1  
环糊精是一种通过α-1,4-糖苷键将D-吡喃葡萄糖单元连接在一起而形成的环状低聚糖,具有"内疏水、外亲水"的刚性锥形空腔结构.正是由于这个独特的"内疏水、外亲水"空间结构,使得环糊精从被发现以来,越来越受到科学工作者的关注.过渡金属催化剂作为重要的工业催化剂,与环糊精体系结合可同时发挥金属的催化性能和环糊精的分子识别和相转移等功能,极大地改善其催化性能.主要综述了环糊精参与的过渡金属催化的有机化学反应,以金属价态分类介绍了常见的0至4价过渡金属参与催化的有机反应,并对环糊精参与的金属共催化体系的未来发展前景进行了展望,预计今后该催化体系将会有更广阔的应用,不断开发出更加高效和更有选择性的催化系统.  相似文献   
5.
量子力学中很少有系统能够精确地计算传播子, 特别是在考虑了自旋轨道耦合效应的情况下. 利用相空间的群论方法, 首先导出了有原子自旋轨道耦合的各向异性量子点传播子的精确解析表达式. 随后利用传播子来计算自旋高斯波包的演化与相应的概率密度, 并研究了原子自旋轨道耦合效应和磁场强度对距离期望值的影响.  相似文献   
6.
7.
陈规伟  龚正良 《电化学》2021,27(1):76-82
石榴石固体电解质由于其高的离子电导率,对锂金属稳定等优点成为了下一代高性能锂电池的重要研究方向之一。但锂金属负极界面浸润性与锂枝晶问题限制了其应用。本文通过简单的液相沉积结合高温烧结的方法,在石榴石固体电解质片表面构建了一层稳定的硼酸三锂(Li3BO3)修饰层。研究表明,Li3BO3修饰层可以有效改善石榴石固体电解质与锂金属负极界面接触,促进锂的均匀沉积/溶出,从而抑制锂枝晶生长,提高界面稳定性。Li3BO3修饰后石榴石电解质片与锂金属之间紧密结合,Li/石榴石界面阻抗由修饰前的1780 Ω·cm2降低至58 Ω·cm2。得益于界面接触的改善,Li3BO3修饰后的LLZTO电解质组装的对称电池可以在0.1 m·cm-2的电流密度下稳定工作超过700 h。而未修饰的对称电池在0.05 mA·cm-2的电流密度下短时间工作即出现微短路现象。  相似文献   
8.
采用顶空固相微萃取(HS-SPME)与气相色谱-质谱(GC-MS)联用技术,对12例卵巢癌、17例成熟型畸胎瘤与16例正常血液样本的挥发性组分进行研究,对影响提取效果的实验因素进行了优化.在最优条件下共检出28种挥发性组分,以各组分峰面积为变量,用SIMCA-P软件进行偏最小二乘判别分析(PLS-DA),3组样本被明显区分.同时,依据PLS-DA载荷图得到8种具有显著性差异的标志物,其中己醛、蘑菇醇的变化与其在肝癌、肺癌患者血液中的变化一致,可作为诊断卵巢癌和成熟型畸胎瘤的挥发性生物标志物.  相似文献   
9.
设计合成了有机硒化合物1,4-二(2-苄硒基)乙氧基蒽,利用1H NMR、13C NMR、红外光谱和质谱对化合物进行了结构表征,采用荧光光谱技术研究了其对金属阳离子的识别。结果表明,其对汞离子有较强的识别能力,且对汞离子表现出开关性能。最后,初步讨论了其的识别机理和应用。  相似文献   
10.
采用超高效液相色谱法同时测定脐橙中的橘红2号和苏丹红染料。样品经乙腈超声提取,氨基固相萃取小柱净化后,用Waters ACQUITY UPLC BEH C18色谱柱分离,以乙腈-水为流动相进行梯度洗脱,采用二极管阵列检测器检测,检测波长分别为478 nm和515 nm。5种染料的质量浓度在0.20~20 mg·L-1范围内呈线性,检出限(3S/N)在0.31~0.53μg·kg-1之间。加标回收率在87.8%~99.4%之间,测定值的相对标准偏差(n=5)在0.54%~3.1%之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号