首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   317篇
  国内免费   362篇
化学   680篇
晶体学   41篇
力学   107篇
综合类   37篇
数学   169篇
物理学   678篇
  2024年   4篇
  2023年   33篇
  2022年   44篇
  2021年   32篇
  2020年   24篇
  2019年   54篇
  2018年   47篇
  2017年   40篇
  2016年   49篇
  2015年   56篇
  2014年   94篇
  2013年   78篇
  2012年   98篇
  2011年   74篇
  2010年   60篇
  2009年   82篇
  2008年   68篇
  2007年   63篇
  2006年   75篇
  2005年   61篇
  2004年   56篇
  2003年   59篇
  2002年   38篇
  2001年   41篇
  2000年   52篇
  1999年   37篇
  1998年   30篇
  1997年   24篇
  1996年   44篇
  1995年   29篇
  1994年   19篇
  1993年   24篇
  1992年   21篇
  1991年   16篇
  1990年   11篇
  1989年   7篇
  1988年   5篇
  1987年   10篇
  1986年   10篇
  1985年   9篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1965年   1篇
  1964年   1篇
  1957年   1篇
排序方式: 共有1712条查询结果,搜索用时 62 毫秒
1.
晶体硅表面钝化是高效率晶体硅太阳能电池的核心技术,直接影响晶体硅器件的性能。本文采用第一性原理方法研究了一种超强酸-双三氟甲基磺酰亚胺(TFSI)钝化晶体硅(001)表面。研究发现,TFSI的四氧原子结构能够与Si(001)表面Si原子有效成键,吸附能达到-5.124 eV。电子局域函数研究表明,TFSI的O原子与晶体硅表面的Si的成键类型为金属键。由态密度和电荷差分密度分析可知,Si表面原子的电子向TFSI转移,从而有效降低了Si表面的电子复合中心,有利于提高晶体硅的少子寿命。Bader电荷显示,伴随着TFSI钝化晶体硅表面的Si原子,表面Si原子电荷电量减少,而TFSI中的O原子和S原子电荷电量相应增加,进一步证明了TFSI钝化Si表面后的电子转移。该工作为第一性原理方法预测有机强酸钝化晶体硅表面的钝化效果提供了数据支撑。  相似文献   
2.
针对离轴菲涅耳数字全息图,提出基于深度学习的单幅数字全息非线性重构方法 .采用经典的菲涅耳衍射积分模拟数字全息成像以供给网络训练所需样本,利用深度卷积残差神经网络通过学习数字全息图与相关物像之间的非线性数学映射关系实现全息图的物像重构.数值模拟表明,与传统的频率滤波和四步相移技术实现菲涅耳数字全息重构相比,本文提出的方法可直接消除零级像及孪生像,无需条纹物项抽取预处理步骤,且重构的物像具有较高的质量,针对相同记录参考光下不同衍射距离所生成的测试集亦具有较强的稳健性.  相似文献   
3.
利用不含有机相的简单水热法制备了Co^2+∶ZnS纳米晶,纳米晶具有立方闪锌矿结构,平均晶粒尺寸约为8.3 nm,在808 nm激光泵浦下具有2~5μm波段的中红外荧光发射,中心波长位于3400 nm和4700 nm,分别对应Co^2+离子的4T2(F)→4 A 1(F)和4T1(F)→4T2(F)的能级跃迁.进一步将制备的纳米晶在还原气氛下进行800℃热处理,获得立方闪锌矿和纤锌矿混合晶型的纳米晶,平均晶粒尺寸增大到22.5 nm左右,热处理后的纳米晶表面羟基含量更低,中红外荧光发射强度显著提高.该Co^2+∶ZnS纳米晶的制备方法简单、在制备过程中不引入有机相等荧光淬灭中心,同时证明通过后热处理过程可以进一步减少表面缺陷及羟基含量,使荧光强度得到大幅提升.  相似文献   
4.
通过实验和数值模拟方法系统研究了单胞壁开孔金属多级类蜂窝与双胞壁开孔金属多级类蜂窝的压溃行为.重点分析了试件尺寸、开孔位置、孔偏距和孔梯度等因素对多级类蜂窝力学性能的影响.结果表明,多级类蜂窝的压溃过程可分为3个阶段:弹性变形、屈曲变形以及密实;单胞壁开孔多级类蜂窝的压溃过程趋向于渐近内凹压溃,而双胞壁开孔多级类蜂窝趋向于轴向压溃;试件尺寸对多级类蜂窝的力学行为有明显的影响,当胞元数达到一定数目时,其力学性能几乎与蜂窝胞元数无关.单胞壁开孔多级类蜂窝的峰值应力大于双胞壁开孔多级类蜂窝的峰值应力,但其平均压溃应力小于双胞壁开孔多级类蜂窝的平均压溃应力;与传统蜂窝相比,蜂窝胞壁开孔设计降低了蜂窝材料的比吸能;孔偏距的存在导致单胞壁开孔多级类蜂窝的峰值应力降低,但随着孔偏距的增加其平均压溃应力呈先减低后增加趋势;多梯度孔设计对多级类蜂窝材料的力学性能有重要影响,与均匀孔多级类蜂窝相比,正梯度孔分布设计降低了多级类蜂窝峰值应力,但提高了其平均压溃应力;多梯度孔分布设计对多级类蜂窝的峰值应力和平均压溃应力影响不大.  相似文献   
5.
为实现空腔爆炸温度、压力变化趋势的准确测量,基于铠装K型热电偶和压力变送器,建立密闭空腔爆后气体温度、压力测量系统。设计密封隔热防护装置,将传感器的敏感端与信号调理模块分别安装在两个密封腔内,有效提高了传感器在大当量爆炸冲击条件下的存活率。在0.86 m/kg1/3比距离密闭空腔大当量爆炸条件下,对传感器及防护装置的性能进行考核验证,爆后测量采集到了有效的气体温度及压力变化历程,且传感器状态能够最终恢复至正常状态。测试结果表明,使用密封隔热安装的K型热电偶和压力变送器可以满足小比距离密闭空腔爆后气体静态温度、压力测量需求。  相似文献   
6.
白光有机发光二极管(OLED)是新一代健康节能照明光源,光效性能已超过荧光灯水平。自从OLED技术问世以来,研究人员陆续开展了关于OLED照明的研究工作。本文介绍了OLED照明的特点,以及国内外OLED照明发展现状,讨论了发展OLED照明技术和装备国产化所亟待解决的重大难题和面临的挑战,重点论述了发展高效大面积OLED照明器件制备技术及推动OLED照明产业化的重要意义。  相似文献   
7.
相较于Wacker工艺进行乙醛工业化生产,发展多相催化体系实现乙醇直接无氧催化脱氢制乙醛和副产氢气,从生产工艺和经济价值方面无疑是一条更加安全高效的路线.在此,我们发展了一种高效、稳固的Cu/SiO2催化剂,用于乙醇的无受体催化脱氢.通过氨蒸发法制备得到高度分散的Cu颗粒,在没有任何平衡气体的纯乙醇进料条件下,显示出超强的热稳定性.活性组分Cu和载体SiO2之间的强相互作用,使其具有优异的催化性能.通过反应条件优化,在250℃下实现了较高的乙醇转化率(>40%)和乙醛选择性(>95%),且催化剂在固定床连续反应过程中可稳定运行超过400 h.  相似文献   
8.
王玉冰  陈杰  延卫  崔建文 《化学进展》2021,33(5):838-854
共轭微孔聚合物(CMPs)是一类有机多孔聚合物,与常规共轭聚合物或多孔材料相比,其最大的特点是既有π共轭骨架又具有大量微孔。这类材料在解决能源和环境问题方面显示出巨大的潜力,已在气体吸附、非均相催化、发光材料、化学传感器、电能存储和生物杂化物等领域显示出巨大的应用前景。目前已开发出多种用于CMPs结构单元设计与合成的新方法,用于制备具有不同结构和特定性质的多种CMPs,有效推动了该领域的快速发展。本综述总结了CMPs的理论模型和结构设计,合成原理、常用合成方法和影响因素分析,以及CMPs在各领域的应用。  相似文献   
9.
利用硅溶胶的成膜性、纳米二氧化钛-氧化锌大的比表面积及导电胶的粘结性,制备了纳米二氧化钛-氧化锌/硅溶胶/导电胶复合材料,基于此复合材料将联吡啶钌固定到金电极表面,制备了磷酸可待因电化学发光(ECL)传感器.在优化的实验条件(800 V负高压、扫描速度100 mV/s,磷酸盐缓冲体系(pH 6.5))下,可待因浓度在1.0×10-7~1.0×10-4 mol/L范围内与电化学发光强度呈良好的线性关系(r2=0.9973),检出限为2.56×10-8 mol/L (S/N=3).传感器表现出良好的重现性与稳定性,连续平行测定1.28×10-5 mol/L可待因溶液10次,发光强度的相对标准偏差(RSD)为2.7%;室温下保存10天后,发光强度为初始值的92%以上.测定可待因药物实际样品的加标回收率在99.3% ~ 102.5%之间.  相似文献   
10.
纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号