首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   5篇
化学   3篇
力学   2篇
物理学   11篇
  2023年   1篇
  2022年   2篇
  2019年   2篇
  2017年   2篇
  2015年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
排序方式: 共有16条查询结果,搜索用时 62 毫秒
1.
综合传动装置磨损产生的金属颗粒在润滑油液中均匀混合,导致装置工作环境的恶化并最终导致装置磨损失效事故的发生。因此,实现综合传动装置磨损劣化状态的准确监测和视情维护策略的合理制定对提高装置的可靠性与可维护性具有重要意义。携带着磨损部位与磨损状态信息的油液光谱与综合传动装置寿命的相互关系反映了装置磨损劣化的分布特征,使实现基于油液光谱数据的装置劣化建模和维护决策成为可能。现有综合传动装置视情维护研究是通过油液光谱数据趋势分析结合经验阈值实现的,没有考虑维护成本、装备可用度等因素的影响。鉴于此,提出基于油液光谱数据的综合传动装置视情维护决策方法。首先,针对综合传动装置的历史故障油液光谱数据,考虑装备寿命与各劣化变量间的相互关系及各劣化变量对装备劣化的贡献程度,采用Weibull比例风险回归建立了装置的工作寿命模型。然后,针对综合传动装置训练演习和执行任务两种使用工况,分别以最少维护成本、最大可用度为目标建立了装置的维护决策模型。与传统的综合传动装置维护决策方法相比,该方法考虑了维护成本因素和装备可用度因素的影响,能够根据维护目标有效的制定装置最优维护时间,为装置的视情维护决策提供了一个客观的量化方法。最后,通过对Ch系列综合传动装置历史故障油液光谱数据的实例分析证明了该方法的有效性,它能够实现综合传动装置视情维护策略的合理制定,也为其他装备的视情维护决策提供了有益的参考。  相似文献   
2.
建立了一维滑动弧裂解CO2的反应机理模型. 利用对流冷却的特征频率计算横向气流对流引起的等离子体组分损失. 将等离子体密度和温度的数值模拟结果与文献中滑动电弧等离子体反应器的实验数据进行了对比,吻合较好. 模拟结果表明,滑动弧裂解CO2会产生大量O和O2等活性助燃粒子以及可燃的CO. 随着对流冷却特征频率的增加,放电过程中最大电子数密度和电子温度减小,CO2转化率下降. 在整个CO2裂解机制中e+CO2→e+CO+O的贡献最大,准稳态中贡献率为90.63%,瞬态中贡献率为98.43%. 反应CO+O+M→CO2+M对CO2生成的贡献率最大. 在实际应用中,为提高CO2转化率,可以通过增大放电电流,增大e+CO2→e+CO+O的反应速率,同时选择合适的气体流量,避免过大的速度引起CO2转化率下降.   相似文献   
3.
孔隙度对湿式离合器局部润滑及摩擦特性影响研究   总被引:1,自引:0,他引:1  
针对湿式离合器局部润滑及摩擦特性的影响因素,建立了摩擦副微观混合润滑模型.考虑了微凸峰接触和局部温升的影响,分析了孔隙度对湿式离合器局部压强分布、油膜和微凸峰承压比、实际接触面积、局部温升的影响.同时,利用摩擦磨损试验机(UMT)进行小试样销-盘试验,分析了不同孔隙度下离合器摩擦副局部摩擦系数的变化.结果表明:在混合润滑中,随着孔隙度的增大,润滑油膜动压作用减小,局部微凸峰接触压强增大,微凸峰法向压力承载比增大,摩擦副实际接触面积增加,因此摩擦系数增大.  相似文献   
4.
以磺化石墨烯(sGNS)为基板材料,通过界面聚合方法制备出不同分级结构磺化石墨烯负载聚苯胺(sGNS/PANI)复合材料,并系统研究了氧化剂类型对复合材料的化学组成、形貌结构和超级电容特性的影响.结果显示,过硫酸铵为氧化剂合成的复合材料中PANI的产率和氧化程度最高,其形貌呈现出sGNS垂直生长PANI纳米短棒阵列结构,PANI的共轭程度和结晶性均较高,从而赋予复合材料高的比电容(497.3 Fg-1),以及良好的倍率特性和循环稳定性(2000次循环后比电容仅损失5.7%).当以三氯化铁为氧化剂时,复合材料中PANI的得率很低,并在sGNS表面形成较薄的包覆层,此时复合材料的比电容最低(228.5 Fg-1),但充放电循环性能较好(2000次循环后比电容的保持率为87.4%).当氧化剂为高锰酸钾时,复合材料中PANI以团聚态颗粒无规堆积在sGNS表面,PANI以无定型结构存在,其比电容虽然较高(419.6 F g-1),但其倍率特性和充放电循环性能较差(2000次循环后比电容损失19.9%).  相似文献   
5.
原子发射光谱是分析油液中微小磨损颗粒元素浓度的重要方法。作为一种非直接测量方法,油液光谱数据是车辆综合传动装置可靠性评估中的系统性能劣化的重要监测指标,可用于系统失效评估与剩余寿命预测。针对油液光谱数据这类型的一元劣化失效,随机过程尤其是Wiener过程模型具有良好的计算分析性质,在基于性能劣化的可靠性分析中应用日趋广泛。通过对车辆综合传动装置运行中的实时采样,共取得50个油液光谱样本。采用其中三种指示元素的线性回归方程来计算综合传动装置运行中每个瞬时的特征值与均值。基于正漂移Wiener过程,建立了综合传动装置的劣化失效预测模型,并基于R语言环境进行了随机微分方程的仿真与求解。得到了油液光谱中的Fe,Cu和Mo元素含量增长趋势的预测结果以及三种指示元素各自的首中时间。经比较,劣化失效周期的预测值较之条件维护时间延长了27 Mh(15.9%)。维护时间的延长,能够有效的减少全寿命周期内的维护次数,并最终降低维护成本。研究结果表明,该方法适用于综合传动装置的磨损与失效预测、全寿命周期费用与维护计划的优化。同时,也可推广至其他复杂机械系统的失效预测与评价等相关领域。  相似文献   
6.
改进欧拉算法在油液光谱分析趋势预测中的应用   总被引:1,自引:0,他引:1  
基于原子发射光谱油液分析是大型机械设备磨损状态监测与故障诊断的重要技术,由于灰预测理论在趋势预测方面具有明显的优势,文章利用油液原子发射光谱分析结果,结合灰预测理论,建立了某综合传动油液中金属元素Fe趋势变化的灰预测模型。在模型参数辨识求解上首次引入了改进欧拉算法,解决了避免原灰预测模型在实际应用过程中出现的预测结果主要依赖于第一个实测值的问题,使得预测结果更准确。将该算法结合原子发射光谱分析Fe元素浓度的阈值制定,有效地捕捉到综合传动发生故障的征兆信息,及时采取措施防止综合传动的故障,具有很好的推广应用价值。  相似文献   
7.
油液光谱分析是研究综合传动运行状态的重要方法,以油液光谱分析数据为基础,运用主成分分析法(PCA)和层次分析法(AHP),建立了一种综合传动健康状态的评价模型。文章结合机械设备健康的概念,综合考虑油液光谱分析数据中各种磨损元素的影响,提出用健康值来定量描述综合传动运行状态的概念,并根据健康值对综合传动健康状态进行了等级划分;利用主成分分析法,对油液光谱分析数据进行主成分提取的研究分析;运用层次分析法研究主成分权重值,探讨判断矩阵的构造、一致性检验等问题;然后将二者有机的耦合,建立评价模型;实验研究表明,此方法具有很高的准确性,能够有效地判断综合传动的运行状态,对开展综合传动状态评估具有重要意义。  相似文献   
8.
马彪  白存儒  杨广珺  李栋 《实验力学》2011,26(2):170-175
后掠机翼的层流控制对于气动减阻有着重要的意义,同时也是非常复杂的研究课题.而对横流驻波的研究是实现层流翼型的一个关健.为此,本文分析并研究了在低湍流度风洞中,采用热线风速仪(CTA)与表面升华法相结合研究由横流不稳定性产生的驻波及其对转捩影响的实验技术,阐述了该实验中架设热线测量系统与升华法表面喷涂的相关技术与细节.实...  相似文献   
9.
螺环吲哚是天然产物和药物化学中的一类重要骨架, 通过导向基团导向的C—H键活化反应已经成为构建螺环吲哚的重要方法. 目前在吲哚的吡咯片段上引入螺环结构已经比较成熟, 然而在吲哚的苯环片段上引入螺环还存在挑战. 以过渡金属铑催化, 选择性地活化吲哚C(4)—H键, 高效构建了氮杂-螺[4,5]吲哚骨架.  相似文献   
10.
原子发射光谱分析得到的磨损微粒元素浓度是综合传动装置性能劣化评估和剩余寿命预测的重要监测指标。由于系统随机劣化过程和光谱测量误差的影响,油液光谱数据中不可避免包含系统劣化随机性和光谱测量不确定性。然而,现有基于油液光谱数据的剩余寿命预测研究中,没有考虑劣化过程的随机性和测量的不确定性对剩余寿命预测的影响。因此,针对综合传动装置劣化随机性和油液光谱数据测量不确定性对寿命预测的影响,提出一种考虑系统随机劣化和数据不确定测量的综合传动装置劣化过程建模方法。基于随机过程首中时间的概念,定义了综合传动装置的剩余寿命;基于Wiener随机过程,建立了考虑系统随机劣化和不确定测量数据的综合传动装置劣化模型,利用极大似然估计方法,估计了劣化过程模型的参数;利用卡尔曼滤波技术,实现了综合传动装置劣化状态的实时估计与更新,进一步得到了考虑系统劣化随机性和光谱数据测量不确定性的剩余寿命分布。研究结果表明,提出的劣化建模方法能够准确估计装置的运行状态,避免了采用条件维护时间对装置进行维护与保养的局限性;综合传动装置的维护时间预测值比条件维护时间延长了193 Mh(113.5%);考虑光谱数据测量不确定性的剩余寿命预测方法优于不考虑测量不确定性的方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号