首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI).采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试.结果显示,少量ODA-G的引入为PANI的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI的赝电容.在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI的比电容达到787 F·g-1,而相应的PANI仅有426 F·g-1.此外,ODA-G/PANI的循环稳定性也远高于纯PANI.  相似文献   

2.
通过真空抽滤的方法制备碳纳米管纸,并对其进行循环伏安电化学氧化处理.以该电化学氧化处理的碳纳米管(CV-CNT)纸为基体,采用电化学聚合沉积聚苯胺(PANI),随后吸附石墨烯(GR),制备具有三明治夹心结构的碳纳米管/聚苯胺/石墨烯(CV-CNT/PANI/GR)复合纳米碳纸.该结构外层为GR,内层由PANI包裹的CNT形成网络骨架,充分发挥三者各自优势构建柔性电极材料.用场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)、拉曼光谱对其形貌与结构进行表征,并测试其电化学性能.研究发现:PANI呈纳米晶须状,并均匀包裹在CV-CNT表面;该复合碳纸具有良好的电容特性、大电流充放电特性以及良好的循环稳定性能.电流密度为0.5A·g-1时,比电容可达415F·g-1;20A·g-1时仍能保持106F·g-1的比电容.由于GR的保护作用,1000次循环之后较CV-CNT/PANI保持更高的有效比电容.该CV-CNT/PANI/GR复合碳纸展现出在高性能超级电容器柔性电极材料的潜在应用价值.  相似文献   

3.
以制备的氧化石墨凝胶和聚苯胺纳米线为原料, 将二者按一定的质量比进行混合超声分散, 再以混合分散液为前驱体采用一步水热法制备得到三维还原氧化石墨烯(RGO)/聚苯胺(PANI) (RGP)复合材料, 采用扫描电镜(SEM), 透射电镜(TEM), X射线衍射(XRD), 傅里叶变换红外(FT-IR)光谱, X射线光电子能谱(XPS)和电化学测试等分析研究了复合材料的形貌、结构和超级电容性能. 结果表明, 复合材料既保持了还原氧化石墨烯的基本形貌, 又能使聚苯胺较好地镶嵌在还原氧化石墨烯的网状结构中; 且当氧化石墨与聚苯胺的质量比为1:1时复合材料在0.5 A·g-1电流密度下比电容可高达758 F·g-1, 即使在大电流密度(30 A·g-1)下其比容量仍高达400 F·g-1,在1A·g-1电流密度下循环1000次后比容量保持率为86%, 表现出了良好的倍率性能和循环稳定性, 其超级电容性能远优于单纯的还原氧化石墨烯和聚苯胺, 其优异的超级电容性能可归咎于二者的相互协同作用.  相似文献   

4.
采用γ射线辐照还原技术获得易分散石墨烯(GNS),并以其为载体,以樟脑磺酸为掺杂剂和软模板,借助化学氧化聚合方法制备出分级孔结构的石墨烯负载聚(1, 5-二氨基蒽醌)(GNS@PDAA)纳米复合材料。运用傅里叶变换红外(FTIR)光谱、拉曼光谱(Raman)、原子力显微镜(AFM)、能谱仪(EDS)、场发射扫描电镜(FE-SEM)和电化学测试等手段研究了不同GNS/DAA质量比对GNS@PDAA复合材料的形貌、结构及超级电容特性的影响。研究表明,当DAA/GNS质量比为6/1时,借助π-π堆叠和网络限域作用, PDAA以20-40 nm纳米颗粒的形式牢固沉积于石墨烯表面,材料内部存在大量10-30 nm尺寸的介孔。该GNS@PDAA复合材料在0.5 A·g-1时呈现最高的比电容(398.7 F·g-1),优异的倍率特性(在50 A·g-1下比电容保持率为71%)和非常好的循环性能(20000次循环后比电容损失仅为8.3%)。进而证实了GNS@PDAA复合材料所组装的超级电容器具有优异的串并联特性。  相似文献   

5.
以尿素、四水合氯化锰和氧化石墨烯为原料,采用水热法并通过热分解制备了一种具有石墨烯包覆结构的石墨烯-二氧化锰复合材料,利用扫描电子显微镜、X射线衍射、比表面积(BET)、拉曼光谱和热失重等技术对其形貌、晶体结构及表面结构进行了表征;在三电极条件下利用循环伏安法、恒流充放电法和交流阻抗法测试了材料的电化学性能,并考察了不同石墨烯含量对材料比电容的影响.结果表明,在不添加模板剂的条件下制备的复合材料中二氧化锰是具有介孔结构的α-MnO2,当复合15%(质量分数)的石墨烯后材料的比表面积从109 m2·g-1提高到168 m2·g-1.复合材料具有更好的电化学性能,在0.2 A·g-1电流密度下复合材料的比电容达到最大值(454 F·g-1),远高于纯二氧化锰的值(294 F·g-1).在2 A·g-1的电流密度下恒流充放电2000次后复合材料的比电容保持率为92%.  相似文献   

6.
采用水热法制备了三维石墨烯(3D-G),并以十八胺(ODA)为接枝剂对部分还原的氧化石墨烯进行氨基化处理,再利用原位聚合法在氨基化石墨烯表面生长聚苯胺,制备了十八胺功能化石墨烯/聚苯胺(G-ODA/PANI).对材料进行了结构表征、电化学性能分析和材料结构的比电容贡献分析.结果显示,电极材料的电容贡献大部分体现为材料的表面电容,G-ODA/PANI电极片在1 A/g电流密度时的比电容最高可达1080 F/g,是未功能化石墨烯/聚苯胺电极材料(G/PANI)的2.57倍,且循环稳定性也有很大的提高,循环10000周后的比容量保持率为90.8%,比G/PANI高9.6%.  相似文献   

7.
以对甲基苯磺酸(TSA)为掺杂剂和乳化剂, 过硫酸铵(APS)为引发剂, 采用现场乳液聚合方法合成了对甲基苯磺酸掺杂聚(苯胺/中性红)复合材料(TSA-PANI/PNR). 利用X射线衍射(XRD)和电子扫描显微镜(SEM)对共聚物复合材料的结构和形貌进行了分析和表征. 以此复合材料为活性物质制备电极, 以l mol/L H2SO4水溶液为电解液组装超级电容器, 通过恒电流充放电、循环伏安和交流阻抗等技术研究了其电化学性能. 研究结果表明, TSA-PANI/PNR电极具有比TSA/PANI更优良的电化学性能. 扫描速度为1 mV/s的循环伏安曲线计算结果表明, 其单电极比电容可达到1350 F/g, 而TSA/PANI在相同的扫速下其单电极比电容仅为1038 F/g; 在5 mA放电电流下, TSA-PANI/PNR组装的电容器首次充放电比电容可达到348 F/g, 1000次循环后容量保持87%.  相似文献   

8.
利用蔗糖和乙醇作为碳源,以氯化镍高温还原形成的镍颗粒作为模板,制备了泡沫状石墨烯多孔材料。 继而以其作为载体,通过浸渍和高温热解法制备了泡沫状MoS2/石墨烯二维复合材料。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱、X射线衍射(XRD)等技术手段研究了复合材料的形貌、组成和结构。 循环伏安、恒流充放电和循环寿命测试均表明,该材料具有良好的超级电容器性能,质量比电容达203.5 F/g,面积比电容达280 mF/cm2,5000次恒流充放电循环后的电容保持率约80%。  相似文献   

9.
《电化学》2017,(1)
通过在凹凸棒石表面原位聚合苯胺制得聚苯胺包覆凹凸棒石,经高温热处理得到凹凸棒石(ATP)负载氮掺杂碳(ANC),然后通过水热-煅烧法在ANC表面负载NiCo_2O_4制得ANC@NiCo_2O_4复合材料.采用FTIR、XRD、SEM、TEM和BET表征其化学组成和微观结构,通过恒流充放电(GCD)和循环伏安法(CV)测试其电化学性能.结果表明,ANC较高的比表面积和疏松多孔的形貌,使水热NiCo_2O_4颗粒能够均匀分散在其表面,与电解液的接触面积较大,赋予复合材料良好的电化学性能.复合材料在1 A·g~(-1)时质量比电容可达945.5 F·g~(-1),16 A·g~(-1)时质量比电容为587.6 F·g~(-1),保持率为62.1%,表现出较好的倍率特性.在12 A·g~(-1)大电流下循环充放电2000次后,质量比电容保持率达74.1%,高于水热纯纳米NiCo_2O_4的48.7%,表明ANC@NiCo_2O_4复合材料具有较好的循环稳定性.  相似文献   

10.
以氧化石墨烯为前驱物,硝酸铁为铁源,N,N-二甲基甲酰胺为溶剂,通过一步溶剂热法制备了粒径50nm左右、均匀地分布在石墨烯表面的石墨烯/α-Fe_2O_3(r GO/Fe_2O_3)复合材料。复合材料中的α-Fe_2O_3均匀地分布在石墨烯片层上,有效的减少了氧化铁纳米颗粒和石墨烯的团聚,实现了氧化铁与石墨烯片之间高效的组装。通过电容性能测试表明,在6 M KOH溶液中,α-Fe_2O_3、r GO和r GO/α-Fe_2O_3复合电极材料2 A/g的电流密度下比电容分别为70 F/g、167 F/g、799 F/g,复合材料的比电容比纯Fe_2O_3有明显提高,倍率特性和循环稳定性能也得到了改善,循环充放电100次后的电容保持率为42%。  相似文献   

11.
以导电玻璃FTO为基底电极, 在硫酸溶液中, 分别研究了苯胺单体浓度和恒定电流大小对聚苯胺(PANI)形貌的影响; 同时恒定苯胺单体的浓度和工作电流, 探究了不同类型的质子酸对PANI阵列形貌的影响. 结果表明, 采用恒电流方法可以制备出一维有序PANI纳米线阵列, 而且当苯胺的浓度为0.1 mol/L, 恒电流法的工作电流密度为0.03 mA/cm2时, 所制备的PANI纳米线阵列形貌最佳; 当用HCl, HNO3和对甲苯磺酸(p-TSA)作为合成PANI的支持液时, 得到树桩状的PANI 纳米结构, 不能得到均一的纳米线阵列结构. 电化学性能测试结果表明, 制备的最佳形貌PANI纳米线阵列的比电容值可达560 F/g; 循环1000周后电容损失率为11%.  相似文献   

12.
Vertical polyaniline (PANI) nanowire arrays on graphene‐sheet‐coated polyester cloth (RGO/PETC) were fabricated by the in situ chemical polymerization of aniline. The 3D conductive network that was formed by the graphene sheets greatly enhanced the conductivity of PANI/RGO/PETC and improved its mechanical stability. PANI nanowire arrays increased the active surface area of PANI, whilst the hierarchically porous structure of the PANI/RGO/PETC electrode facilitated the diffusion of the electrolyte ions. Electrochemical measurements showed that the composite electrode exhibited a maximum specific capacitance of 1293 F g?1 at a current density of 1 A g?1. Capacitance retention was greater than 95 %, even after 3000 cycles, which indicated that the electrode material has excellent cycling stability. Moreover, the electrode structure endowed the PANI/RGO/PETC electrode with a stable electrochemical performance under mechanical bending and stretching.  相似文献   

13.
化学氧化法制备聚苯胺/多壁碳纳米管复合材料(PANI/MWCNT),扫描电镜(SEM)、XRD及IR表征样品结构及形貌,电化学方法测定复合电极循环伏安曲线、恒流充放电曲线及电极交流阻抗.结果表明,PANI/MWCNT电极在1mol/L的Li2SO4溶液中具有较好电容性能,在电流密度为5mA/cm2时,比电容为412F/g.PANI/MWCNT电极较PANI电极有更好的大电流放电能力,50mA/cm2下复合电极的比电容仍达318F/g,为5mA/cm2时该电极比电容的77.2%,而PANI电极的比电容仅为其5mA/cm2时的56.2%.交流阻抗证明碳纳米管降低复合电极的电阻,显著提高大电流放电能力.  相似文献   

14.
《中国化学快报》2021,32(8):2448-2452
Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity,fast charge/discharge process,along with long-cycling life.Herein,a poly(ac rylo n it rile-co-β-methyl hydrogen itaconate) copolymer was prepared and used to synthesize flexible hollow carbon nanofibers(HCNFs) via an electrospinning method without breaking after multiple bending.Subsequently,the inner and outer surfaces of HCNFs were evenly covered with ordered needlelike polyaniline(PANI) through in-situ polymerization methods to obtain three-dimensional flexible HCNFs/PANI composites,which exhibited a high capacity 1196.7 F/g at 1 A/g and good cycling stability(90.1% retention at 5 A/g after 3000 cycles).The symmetrical supercapacitor based on the HCNFs/PANI composites also delive red an outsta nding electrochemical performance with high energy/power density(60.28 Wh/kg at 1000 W/kg) and superior cycling durability(90% capacitance retention after at 5 A/g3000 cycles),which confirmed that the HCNFs/PANI composites had a wide application potential in flexible energy storage devices.  相似文献   

15.
MnO2/polyaniline/graphene composite as a supercapacitor electrode material was synthesized through an interfacial polymerization approach in the interface of oil/water phase. The as‐synthesized MPG is characterized by infrared spectroscopy, XRD, XPS, SEM and TEM, and its electrochemical performance is measured by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The 3D nanostructure of MPG and loose nanorod structure of polyaniline (PANI) coated with round MnO2 pellets could be clearly observed. The maximum energy density of MPG is 45.4 Wh/kg (at a power density of 67.8 kW/kg) and the highest power density is 229.2 kW/kg (at an energy density of 25.7 Wh/kg). The capacitance retentions after 500 cycles at the scan rate of 5 mV/s for MGP composite and PANI/graphene are 70.4% and 59.1%, respectively, and the capacitance values after 500 cycles are 158.4 F/g and 114.8 F/g, respectively. The improved performance of MPG is due to the 3D nanostructure, loose nanorod structure of PANI and stable support of graphene, which prevent the mechanical deformation effectively during the fast charge/discharge process and facilitate the diffusion of the electrolyte ions into the inner region of active materials. The composite material is very promising for the next generation of high‐performance supercapacitors electrode.  相似文献   

16.
运用重氮化技术制备了水溶性磺化碳纳米管,在此基础上,以不同直径的磺化碳纳米管(1~2 nm,<8 nm,10~20 nm,30~50 nm)为载体,采用原位氧化聚合方法合成了一系列磺化碳纳米管改性聚苯胺复合材料.红外和紫外-可见光谱分析表明,聚苯胺与磺化碳纳米管之间存在π-π相互作用,并形成了电荷转移复合物;且随着碳纳...  相似文献   

17.
A hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen‐doped hollow carbon shells (NHCSs@MnO2), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m2g?1) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling. Owing to the synergistic effect of NHCSs and MnO2, the composite shows a high specific capacitance of 306 F g?1, good rate capability, and an excellent cycling stability of 95.2 % after 5000 cycles at a high current density of 8 A g?1. More importantly, an asymmetric supercapacitor (ASC) assembled by using NHCSs@MnO2 and activated carbon as the positive and negative electrodes exhibits high specific capacitance (105.5 F g?1 at 0.5 A g?1 and 78.5 F g?1 at 10 A g?1) with excellent rate capability, achieves a maximum energy density of 43.9 Wh kg?1 at a power density of 408 W kg?1, and has high stability, whereby the ASC retains 81.4 % of its initial capacitance at a current density of 5 A g?1 after 4000 cycles. Therefore, the NHCSs@MnO2 electrode material is a promising candidate for future energy‐storage systems.  相似文献   

18.
通过有机化学合成法先在碳纳米管表面接枝上苯胺单体,然后在不锈钢电极表面在硫酸溶液中采用循环伏安法电化学沉积聚合制得碳纳米管/聚苯胺(CNTs/PANI)纳米复合材料.扫描电子显微镜和傅立叶变换红外光谱表征所得材料的微观结构和基团,循环伏安和恒流充放电测试用于考察所得CNTs/PANI纳米复合材料的电化学性能.所得结果与...  相似文献   

19.
In this work, NiCo2O4(NCO) was synthesized via microwave hydrothermal method and a further annea- ling treatment. Research results have shown that the surface defects(Co2+ site) and pore size of the materials can be adjusted by simply changing the calcination temperatures, and porous nanowire arrays structure can be obtained. The porous structure is conducive to the penetration of the electrolyte and enables the NCO to fully participate in the electrochemical reaction. What's more, the NCO material has ample space to buffer the volume change in the cycle test, improving the cycling stability. The NCO obtained at 350℃ has better performance. It exhibits a specific capacitance of 648.69 F/g at 1 A/g and good rate capability. Especially, at 10 A/g, the specific capacitance can still be maintained at 80.00% after 10000 galvanostatic charge/discharge(GCD) cycles, showing excellent cycling stability.  相似文献   

20.
为解决电化学电容器工作电压过低的问题, 本文以钽电解电容器的烧结型钽块为阳极, 聚苯胺(PANI)/TiO2电化学电容器复合电极为阴极, 成功制备了高能量密度、高工作电压的电解-电化学混合电容器. PANI/TiO2复合电极是通过在多孔阳极氧化钛纳米管阵列中电化学聚合PANI 制得. 该阴极具有优良的倍率特性, 当平均功率密度为0.55 mW·cm-2时, 对应的比容量仍达到10.0 mF·cm-2. 由于与电解电容器复合, 该混合电容器的单元工作电压可高达100 V. 而且电化学电容器阴极的比容量远大于阳极, 故阴极所需尺寸远小于阳极, 节省的空间可用于增大阳极尺寸, 从而使混合电容器的比容量极大提高. 所制备的混合电容器体积能量密度和质量能量密度分别是钽电解电容器的4 倍和3 倍. 将该混合电容器在100 V下进行短路充放电实验, 循环10000 次后发现容量未衰减, 等效串联电阻未增加, 显示出极好的循环稳定性和功率特性. 计算表明其最大功率密度高达847.5 W·g-1. 电化学阻抗谱显示其具有优良的阻抗特性和频率特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号