首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   4篇
化学   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
排序方式: 共有4条查询结果,搜索用时 6 毫秒
1
1.
苄胺氧化偶联制N-苄烯丁胺通常需使用贵金属催化剂, 开发廉价催化剂具有重要研究价值. 本工作以具有大比表面积和丰富表面缺陷的分级结构碳纳米笼(hCNCs)作为无金属催化剂, 在无溶剂、100 ℃和常压O2条件下即可实现苄胺到N-苄烯丁胺的高效转化, 反应8 h的苄胺转化率和N-苄烯丁胺选择性均可达98%, 远优于碳纳米管、还原氧化石墨烯、活性炭等典型碳材料. hCNC700样品循环使用6次后催化性能基本无衰减, 且具有优秀的底物拓展性. hCNC700的优异催化性能源于其超高的比表面积可提供大量的缺陷活性位点, 而独特的分级孔结构十分有利于反应过程中的传质, 使丰富的表面活性位点(缺陷)得以充分利用.  相似文献   
2.
费托合成可以将来源广泛的合成气转化为低碳烯烃和燃油等高附加值化学品, 是后石油时代的重要化工过程, 而发展高性能的催化剂是该工程产业化的关键. 以具有高比表面积和高氮含量的氮掺杂碳纳米笼(NCNC)为载体, 采用等体积浸渍法制备了Ru的质量分数为20%的Ru/NCNC催化剂, 所得Ru纳米颗粒均匀分散, 相比于未掺杂碳纳米笼负载的Ru催化剂(Ru/CNC), Ru纳米粒子尺寸更小且分布更集中. Ru/NCNC催化剂展现出优异的费托合成催化性能, 在0.5 MPa和220 ℃的温和条件下, 具有高的催化活性、高的C5+选择性(55.7%)、低的CH4选择性(13.5%)和高的催化稳定性(60 h, CO转化率保持在≈33%), 显著优于Ru/CNC. 这可归因于N掺杂提高了Ru活性中心的数量和电子态密度以及表面碱性, 增强了金属-载体相互作用, 进而提高Ru/NCNC的催化活性、长链产物(C5+)选择性、抗烧结能力和催化稳定性. 本研究提供了一条通过掺杂碳载体设计提升费托合成催化剂性能的有效策略.  相似文献   
3.
发展非对称超级电容器可有效提升超级电容器能量密度, 选择电极材料和电解质是关键. 分级结构碳纳米笼因具有比表面积大、微孔-介孔-大孔共存、导电性好、稳定性高等优点, 特别适合用作超级电容器电极材料. 进一步通过N, S共掺杂引入赝电容、改善浸润性, 所得的氮硫共掺杂碳纳米笼(NSCNC)在1 mol?L-1 H2SO4溶液、电势范围0~1 V、电流密度1 A?g-1下表现出337 F?g-1的高比容量. 水合三氧化钨(WO3?0.6H2O)纳米棒通过W6+/W5+的氧化还原反应实现H+的嵌入与脱出, 在–0.55~0.3 V、5 A?g-1下表现出454 F?g-1的高比容量. 以NSCNC和WO3?0.6H2O作正负极材料、原位聚合高分子凝胶电解质(IPGE/H2SO4)作准固态电解质组装的非对称超级电容器的工作电压为1.5 V, 其倍率性能非常接近于在H型电解池中以1 mol?L-1 H2SO4为电解液的器件, 而远优于以传统聚乙烯醇/硫酸(PVA/H2SO4)作凝胶电解质的器件, 其根源是原位聚合的IPGE/H2SO4与电极材料之间建立了有效的电荷传输界面, 改善了H+离子的传导, 有效降低了电压降. 本工作不仅展示了酸性介质中NSCNC//WO3?0.6H2O超级电容器的优异储能性能, 还提供了一种新的用于构建准固态超级电容器的原位聚合凝胶电解质.  相似文献   
4.
锂氧(Li-O2)电池因具有超高的理论能量密度而受到人们的关注,但仍面临实际比容量较低、过电势较高和循环稳定性较差等挑战.以具有高比表面积、分级孔结构、丰富缺陷和高电导率等特征的3D分级结构碳纳米笼(hCNC,hierarchical carbon nanocages)为正极材料,构建出具有高放电容量(14080 mAh·g-1)和良好循环稳定性的Li-O2电池;当在电解质中添加可溶性乙酰丙酮亚铁(Fe(acac)2)氧化-还原介质后,其放电容量、倍率性能和良好循环稳定性显著提升,过电势明显下降,如完全放电容量可达23560 mAh·g-1(XC-72的7.82倍),在0.5 A·g-1电流密度和800 mAh·g-1截止比容量下可稳定循环138圈(远高于未加Fe(acac)2的68圈和XC-72的13圈),在5.0 A·g-1高电流密度下仍可稳定循环63圈(远高于未加Fe(acac)2的21圈).优异的电化学性能可归因于:hCNC的特征结构能有效地促进电子传输和2Li++O2+2e-⇆Li2O2(s)的可逆转化,为放电产物Li2O2提供足够分散和容纳空间;可溶性氧化-还原介质Fe(acac)2能有效地催化Li2O2放电产物形成均匀分散的小尺寸颗粒堆积多孔形貌和随后的充电分解,进而降低过电势和提升电池的循环稳定性.本研究提供了通过设计新型碳基正极材料和添加高效可溶性氧化-还原介质提高锂氧电池性能的新思路.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号