首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   6篇
化学   7篇
  2022年   1篇
  2017年   1篇
  2014年   3篇
  2012年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
可逆配位链转移催化体系由过渡金属催化剂和主族金属烷基化合物组成,聚合物链在两者间进行快速可逆的链转移反应实现了聚合物的分子量、分子量分布的可控,且能够得到具有不同拓扑结构及立体选择性的均聚物和共聚物。配位链转移聚合(CCTP)除具有传统的活性阴离子聚合的优点之外,更重要的是,其平均每个活性中心可产生多条聚合物链,中心金属利用率超过100%,且催化剂立体选择性强。本文简要介绍了双烯烃配位链转移聚合研究进展,包括CCTP的基本原理,双烯烃配位链转移均聚合、共聚合及链穿梭聚合方面的研究。  相似文献   
2.
采用生物质原料腰果酚和9,10-二氢-9-氧杂-10-膦杂菲-10-氧化物(DOPO)为原料, 合成了一种磷杂菲改性腰果酚多元醇(P-Cardanol-Polyol), 并利用核磁共振氢谱和磷谱对其结构进行了表征. 利用P-Cardanol-Polyol对聚氨酯硬泡(RPUF)进行阻燃改性, 得到一系列阻燃聚氨酯硬泡. 考察了P-Cardanol-Polyol的用量对阻燃聚氨酯硬泡的形貌、 密度、 热导率、 压缩性能、 热稳定性以及阻燃性能的影响. 研究结果表明, P-Cardanol-Polyol对聚氨酯硬泡的密度影响可以忽略不计; 随着P-Cardanol-Polyol的加入, 阻燃聚氨酯硬泡的平均孔径逐渐减小, 热导率也逐渐降低. 未改性聚氨酯硬泡的最大热释放速率和总放热量分别为390 kW/m2和31.9 MJ/m2, 阻燃聚氨酯硬泡则降低至340 kW/m2和24.6 MJ/m2. 此外, 阻燃聚氨酯硬泡的压缩强度比未改性聚氨酯硬泡提升了约13%. 炭层分析结果表明, P-Cardanol-Polyol能够促进聚氨酯硬泡形成连续致密且具有良好抗热氧化性能的炭层, 有利于减少燃烧过程中可燃性气体的逸出, 从而提升阻燃性能.  相似文献   
3.
以球形高效负载的TiCl4/MgCl2/邻苯二甲酸二异丁酯(DIBP)为催化剂, 采用本体聚合方法进行丙烯与1-丁烯共聚合研究. 考察了共单体效应对共聚活性及聚合物立构规整性的影响; 表征了共聚物的结构. 结果表明, 随着1-丁烯/丙烯投料比的增加, 聚合活性呈先升高后降低的趋势, 在1-丁烯/丙烯摩尔投料比为0.26条件下聚合活性达到最高, 并随着共聚物中1-丁烯含量的增加, 共聚物的熔点明显下降, 分子量降低, 分子量分布变窄, 同时共聚物力学性能有明显提高, 透明度逐渐增加.  相似文献   
4.
通过双(环戊二烯基)二氯化锆(Cp2ZrCl2)催化剂和改良的甲基铝氧烷(MMAO)助催化剂, 合成了无机-有机杂化共聚物. 研究了2种具有不同单乙烯基反应基团的笼型倍半硅氧烷(POSS)与乙烯的聚合. 对共聚产物的结构、 热力学性质、 分子量及其分布等进行了研究. 共聚单体(POSS)的插入率在0.01%~0.30%之间, 随着共聚单体在共聚物中摩尔分数的增大, 聚合物的熔点和熔解热降低. 共聚物的热重分析结果显示, 乙烯-POSS共聚物拥有更高的热分解温度以及较高的热分解残留量. 随着POSS的加入, 聚合物的分子量明显提高, 聚合物的分子量分布变宽.  相似文献   
5.
合成了新型催化剂8-苯胺-1-萘磺酸钛配合物, 并应用于乙烯与降冰片烯的共聚合反应中. 分别考察了助催化剂种类[甲基铝氧烷(MAO)和三乙基铝(TEA)]、 降冰片烯浓度、 Al/Ti摩尔比、 聚合温度和聚合压力对催化活性与共聚性能的影响. 通过核磁共振、示差扫描量热和凝胶渗透色谱等对所制备的共聚物进行了表征. 结果表明, 在相同条件下, 以MAO为助催化剂时, 共聚催化活性更高, 催化剂为单活性中心, 可得到分子量分布较窄(PDI≈3)的共聚产物, 其共聚反应机理为加成聚合. 另外, 随着降冰片烯浓度的升高, 共聚物中降冰片烯单元的摩尔比呈线性上升趋势, 所得共聚物的熔点随之降低.  相似文献   
6.
石墨烯自2004年发现以来,由于其独一无二的优异性迅速成为科学家们的研究热点.由于石墨烯具有极其优异的电学、力学和热学等性能,因此被广泛应用于高性能聚合物基复合材料的制备.众所周知,纳米填料在聚合物中的分散状态以及与基体间的界面作用是构筑高性能聚合物纳米复合材料的关键因素.由于石墨烯极易团聚,难以通过传统的熔融共混法制备均匀分散的石墨烯增强-聚烯烃纳米复合材料.另一方面,聚烯烃通常需要在较高温度下才能溶于部分有毒溶剂(如:三氯苯和二甲苯等),因此溶液共混法也不适用于聚烯烃-石墨烯纳米复合材料的制备.有鉴于此,本文开发了一种共沉积法制备石墨烯/二氯化镁负载钛系齐格勒-纳塔催化剂的路线.通过原位聚合直接制备出石墨烯均匀分散的聚烯烃/石墨烯纳米复合材料.考察了石墨烯的加入量对催化剂形态及其催化乙烯聚合行为的影响.当石墨烯加入量较低时,多个石墨烯片被包裹于较大的催化剂粒子中.随着石墨烯加入量的增加,催化剂趋向于在石墨烯表面聚集.继续增加石墨烯量将导致石墨烯包裹催化剂粒子,降低过渡金属钛的负载效率.通过三乙基铝活化后,所制备的催化剂具有非常高的乙烯催化活性,所生成的聚乙烯/石墨烯纳米复合材料复制了催化剂的片状结构.同时,通过对所制备的聚乙烯/石墨烯纳米复合材料进行电子显微镜和X射线衍射分析可知,石墨烯均匀分散于聚乙烯基体中,并且没有任何团聚现象发生.该复合材料的热重分析表明,仅加入非常少量的石墨烯就可以使其具有比纯聚乙烯更高的热稳定性,当石墨烯加入量为0.66 wt%时,其5 wt%热分解温度较纯聚乙烯升高了54°C.同时,所制备聚乙烯/石墨烯纳米复合材料具有更优异的机械性能.因此,本研究提供了一个简单高效的高性能聚烯烃/石墨烯纳米复合材料的制备方法.  相似文献   
7.
采用异丙氧基钕/二异丁基氢化铝/含氯化合物(Nd(OiPr)3/Al(iBu)2H/RCl)催化体系,催化异戊二烯(IP)聚合。 考察了氯源和陈化温度对聚合的影响,并通过IR、NMR和GPC等技术手段对聚合物的微观结构、相对分子质量及相对分子质量分布等进行了表征。 结果表明,氯源种类对聚异戊二烯的相对分子质量分布影响较大。 采用Nd(OiPr)3/Al(iBu)2H/Me2SiCl2催化体系可制得窄分布(MWD<1.5)的聚异戊二烯;该体系催化异戊二烯聚合过程中,陈化温度对聚异戊二烯的MWD影响较大,在0~50 ℃陈化时,MWD可保持在1.5以下,陈化温度的进一步升高,MWD则变得很宽;同时,随陈化温度升高,聚合收率不断增加,聚合物1,4-结构含量稍有增加。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号