首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   12篇
化学   19篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
In weak acidic medium, anticancer antibiotics bleomycin A5 (BLMA5) and bleomycin A2 (BLMA2) can react with halofluorescein dyes such as erythrosin (Ery), eosin Y (EY), eosin B (EB) and rose bengal (RB) by virtue of electrostatic attraction and hydrophobic force to form the ion-association complexes, which can result in the fading reactions of four halofluorescein dyes. The maximum fading wavelengths of these four dyes were located at 527 nm for Ery, 515 nm for EY, 517 nm for EB and 546 nm for RB, respectively. The decrements of absorbance (AA) were directly proportional to the concentrations of bleomycin in a certain range. A new method for the determination of bleomycins anticancer drugs based on fading reactions of halofluorescein dyes has been developed. The method was not only highly sensitive but also simple and rapid. The molar absorptivities (ε) ranged from 1.5 × 10^5 to 7.5 × 10^5 L·mol^-1·cm^-1. It was applied to determination of the bleomycins in human serum, urine and rabbit serum samples. In this work, the spectral properties and the optimum reaction conditions were investigated. The structure of ion-association complexes and the reaction mechanism were discussed.  相似文献   
2.
段慧  刘忠芳  刘绍璞  孔玲 《中国化学》2008,26(2):295-301
在稀HCl介质中,K3[Fe(CN)6]与阿莫西林(AMO)、氨苄西林(AMP)、氯唑西林钠(CLO)、羧苄西林钠(CAR)和青霉素钠(BEN)等抗生素药物在加热条件下反应生成结合产物,会导致溶液的共振瑞利散射(RRS)强度急剧增强,并产生新的RRS光谱,5种反应产物的最大散射峰均位于330 nm附近。在一定的浓度范围内,不同的反应体系散射强度(∆I)与药物浓度成正比,反应具有很高的灵敏度,K3[Fe(CN)6]对5种药物的检出限分别在4.61至5.62 ng·mL-1之间。本文研究了RRS的光谱特征和适当的反应条件,并讨论了反应机理和散射增强的原因,还考察了共存物质的影响,表明方法具有较好的选择性,可用于胶囊、片剂和人血清及尿液中青霉素类药物的测定。  相似文献   
3.
在pH为5.0-5.4的乙酸-乙酸钠缓冲溶液中,克林霉素(Clin)与钯(Ⅱ)形成螯合阳离子,它能进一步与二碘荧光素(DIF),赤藓红(Ery),曙红Y(EY)等卤代荧光素类染料反应形成1:1:1的三元离子缔合物,此时将引起吸收光谱变化和荧光猝灭,同时还导致共振瑞利散射(RRS)的急剧增强并产生新的RRS光谱,钯(Ⅱ)-克林霉素与DIF,Ery和EY形成产物的最大散射波长分别位于285,287,32 1nm处,另外还有些较弱的散射峰存在。散射增强(ΔI)与克林霉素浓度在一定范围内成正比,可用于克林霉素的定量测定。对于DIF,Ery和EY体系的线性范围和检出限分别为0.025-2.1μg•mL-1和7.8 ng•mL-1,0.053-2.4μg•mL-1和16.0 ng•mL-1;以及0.038-2.4μg•mL-1和11.0 ng•mL-1。本文研究了适宜的反应条件,考察了共存物质的影响,表明方法有较好的选择性,基于三元离子缔合物的RRS光谱,发展了一种高灵敏、简便快速测定克林霉素的新方法。文中还对离子缔合物的组成,结构和反应机理,以及离子缔合物对吸收,荧光和RRS光谱的影响进行了讨论。  相似文献   
4.
在pH值为2.5~4.0的BR缓冲溶液介质中,牛血清白蛋白(BSA)、糜蛋白酶(Chy)和α-淀粉酶(α-Amy)等蛋白质与酸性多糖硫酸软骨素A(CS)形成结合物。 此时将会使共振瑞利散射(RRS)和二级散射(SOS)、倍频散射(FDS)等共振非线性散射的强度显著增大。 在蛋白质过量时,3种散射增强(ΔIRRS、ΔISOS和ΔIFDS)均在一定范围内与CS的浓度成正比,方法具有高灵敏度。 当用Chy、BSA和α-Amy作探针时,3种散射法对于CS的检出限分别在1.4~5.8 μg/L、2.0~13.2 μg/L和1.8~9.6 μg/L。 其中以Chy-CS体系的RRS法最灵敏(检出限1.4 μg/L),可用于痕量CS的测定。 研究了反应体系的RRS、SOS和FDS的光谱特征、适宜的反应条件和影响因素,并以Chy-CS体系为例考察了共存物质的影响,方法有良好的选择性,将其用于滴眼液中CS的测定,取得了较好的结果。  相似文献   
5.
In pH 1.0 acidic medium, double-charged triaminotriphenylmethane dyes such as methyl green (MEG) and iodine green (IG) react with potassium ferrocyanide to form 2 : 1 ion-association complexes by virtue of electrostatic forces and hydrophobic interaction. It results in the change of absorption and the great enhancement of resonance Rayleigh scattering (RRS) and the appearance of new RRS spectra. Two systems have similar spectral characteristics and their maximum RRS wavelengths are all located at 276 nm and smaller peaks are located at 332 and 457 nm, respectively. The intensity of RRS is directly proportional to the concentration of [Fe(CN)6]^4- in the range of 0.03-5.7 μg·mL^-1 (MeG system) or 0.04-5.9 μg·mL^-1 (IG system). The RRS method has high sensitivity and the detection limit (3σ) for potassium ferrocyanide is 9.3 ng·mL^-1 (MeG system) or 11.2 ng·mL^-1 (IG system). The optimum conditions, influencing factors and effects of foreign substances are investigated. The method also has a good selectivity. A sensitive, rapid and simple RRS method for the determination of potassium ferrocyanide in salinized food and table salt has been developed.  相似文献   
6.
在pH 1左右的酸性介质中,甲基绿(MeG)和碘绿(IG)双电荷三氨基三苯甲烷染料与亚铁氰根阴离子能借助静电引力和疏水作用而形成2:1的离子缔合物,在引起吸收光谱变化的同时,能导致共振瑞利散射(RRS)的显著增强,并出现新的RRS光谱,两体系有相似的RRS光谱特征,最大RRS波长位于276 nm,并在332 nm,457 nm有强度较低的散射峰,K4[Fe(CN)6]分别为0.03~5.7μg•mL-1(MeG体系)和0.04~5.9μg•mL-1(IG体系)范围内,K4[Fe(CN)6]浓度与散射强度(ΔIRRS)成正比。方法具有高灵敏度,对K4[Fe(CN)6]的检出限(3σ)分别为9.3 ng•mL-1和11.2ng•mL-1。本文实验了适宜的反应条件和影响因素,考察了共存物质的影响,表明方法有较好的选择性,可用于盐渍食品和食盐中痕量亚铁氰化钾的测定。  相似文献   
7.
在pH2.4~2.8的酸性介质中,曙红Y分子(H2L)取代水分子而与Triton X-100形成氢键缔合物.该疏水性的氢键缔合物,在水相的"挤压"作用和范德华力的作用下,能进一步聚集形成纳米微粒.此时将引起吸收光谱的变化和荧光猝灭,并导致共振瑞利散射(RRS)显著增强,为建立褪色分光光度法、荧光猝灭法和共振瑞利散射法测定Triton X-100创造了条件.三种方法均有较高的灵敏度.其中以RRS法灵敏度最高,对于Triton X-100的检出限为20.6ng/mL.本文研究了曙红Y与Triton X-100相互作用的适宜条件和对吸收、荧光和RRS光谱的影响.考察了共存物质的影响,表明方法有良好的选择性.发展和建立了灵敏、简便、快速测定Triton X-100的分光光度、荧光猝灭法和RRS新方法.文中还结合红外光谱、透射电子显微镜技术和量子化学方法对曙红Y-Triton X-100氢键缔合物及纳米微粒的形成以及对相应的光谱特性的影响进行了讨论,并研究了方法在环境分析中的应用.  相似文献   
8.
在pH4.0~5.0的弱酸性介质中,Ce(Ⅳ)能与诺氟沙星(NOR)、环丙沙星(CIP)、培氟沙星(PE)、洛美沙星(LOM)和司帕沙星(SPA)等氟喹诺酮类抗生素(FLQs)反应,并最终形成Ce(HL)(OH)4型的三元混配络合物.此时,仅能引起吸收光谱的微小变化和摩尔吸光系数(ε)的少量提高,但是却能导致共振瑞利散射(RRS)的显著增强,5种体系的最大散射波长均位于381nm附近,并在534nm处出现一个较小的散射峰,散射增强(ΔI)在一定范围内与FLQs的浓度成正比,方法有高灵敏度,对不同的FLQ其检出限(3σ)除SPA(16.0μgmL-1)之外,其余FLQs在1.9~5.3ngmL-1之间.研究了Ce(Ⅳ)与FLQs相互作用对RRS光谱的影响,反应的适宜条件和影响因素,考察了共存物质的影响,表明方法有良好的选择性,可用于某些样品中FLQs的测定.还结合吸收光谱的变化和量子化学计算,讨论了反应机理及散射增强的原因.  相似文献   
9.
在pH=1.4~3.4的酸性介质中, [Hg(SCN)4]2-配阴离子可与牛血清白蛋白(BSA)、 γ-球蛋白(γ-G)和血红蛋白(Hb)等蛋白质反应形成复合物, 从而引起蛋白质荧光的猝灭. 荧光猝灭的程度在一定范围内与Hg(Ⅱ)的浓度呈线性关系, 可用于Hg(Ⅱ)的测定. 该方法有较高的灵敏度, 检出限(3σ)分别为4.4 ng/mL(BSA)、 6.5 ng/mL(γ-G)和12.9 ng/mL(Hb), 其中以BSA体系灵敏度最高. 研究了[Hg(SCN)4]2-与蛋白质相互作用对荧光光谱的影响、 适宜的反应条件和影响因素; 结合吸收光谱的变化、 温度的影响以及某些热力学参数讨论了荧光猝灭反应的机理; 并以[Hg(SCN)4]2--BSA体系为例考察了共存物质的影响. 结果表明, 该方法具有良好的选择性. 以BSA为探针采用荧光猝灭法测定了红药水中汞溴红和乙肝疫苗中硫柳汞的含量, 结果令人满意.  相似文献   
10.
曙红Y(EY)是一种荧光染料, 它具有强的荧光, 而普罗帕酮(PPF)也是一种荧光物质. 在pH 2.5~3.8的酸性溶液中, EY的最大发射波长(λem)位于549 nm, PPF的λem则在419 nm处, 两者的荧光光谱相距较远而能很好地分开. 当PPF与EY反应形成复合物时, 观察到两者的荧光均发生猝灭, 因此这是一种双荧光猝灭的反应体系. 当用EY作探针测定PPF时, 检出限(3σ)为9.4 ng/mL|反之当用PPF作探针测定EY时, 检出限为259.7 ng/mL, 前者具有很高的灵敏度, 后者灵敏度较低, 因此方法更适合于对痕量PPF的定量测定. 研究了荧光猝灭反应的适宜条件、影响因素和分析化学特性, 并探讨了反应机理和复合物的组成和结构, 结果表明两者通过静电引力、疏水作用、芳基堆积作用和氢键作用而形成1∶1的复合物. 荧光猝灭是一种静态猝灭过程. 因此以EY作探针荧光猝灭法测定PPF为例, 考察了方法的分析应用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号