首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   6篇
物理学   6篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
In this paper,we use the a-plane InGaN interlayer to improve the property of a-plane GaN.Based on the a-InGaN interlayer,a template exhibits that a regular,porous structure,which acts as a compliant effect,can be obtained to release the strain caused by the lattice and thermal mismatch between a-GaN and r-sapphire.We find that the thickness of InGaN has a great influence on the growth of a-GaN.The surface morphology and crystalline quality both are first improved and then deteriorated with increasing the thickness of the InGaN interlayer.When the InGaN thickness exceeds a critical point,the a-GaN epilayer peels off in the process of cooling down to room temperature.This is an attractive way of lifting off a-GaN films from the sapphire substrate.  相似文献   
2.
The effects of V/Ill growth flux ratio on a-plane GaN films grown on r-plane sapphire substrates with an InGaN interlayer are investigated. The surface morphology, crystalline quality, strain states, and density of basal stacking faults were found to depend heavily upon the V/III ratio. With decreasing V/III ratio, the surface morphology and crystal quality first improved and then deteriorated, and the density of the basal-plane stacking faults also first decreased and then increased. The optimal V/III ratio growth condition for the best surface morphology and crystalline quality and the smallest basal-plane stacking fault density of a-GaN films are found. We also found that the formation of basal-plane stacking faults is an effective way to release strain.  相似文献   
3.
Gallium nitride(Ga N)-based high electron mobility transistors(HEMTs)that work in aerospace are exposed to particles radiation,which can cause the degradation in electrical performance.We investigate the effect of proton irradiation on the concentration of two-dimensional electron gas(2 DEG)in Ga N-based HEMTs.Coupled Schr¨odinger’s and Poisson’s equations are solved to calculate the band structure and the concentration of 2 DEG by the self-consistency method,in which the vacancies caused by proton irradiation are taken into account.Proton irradiation simulation for Ga N-based HEMT is carried out using the stopping and range of ions in matter(SRIM)simulation software,after which a theoretical model is established to analyze how proton irradiation affects the concentration of 2 DEG.Irradiated by protons with high fluence and low energy,a large number of Ga vacancies appear inside the device.The results indicate that the ionized Ga vacancies in the Ga N cap layer and the Al Ga N layer will affect the Fermi level,while the Ga vacancies in the Ga N layer will trap the two-dimensional electrons in the potential well.Proton irradiation significantly reduced the concentration of 2 DEG by the combined effect of these two mechanisms.  相似文献   
4.
We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress.  相似文献   
5.
The effects of V/Ⅲgrowth flux ratio on a-plane GaN films grown on r-plane sapphire substrates with an InGaN interlayer are investigated.The surface morphology,crystalline quality,strain states,and density of basal stacking faults were found to depend heavily upon the V/Ⅲratio.With decreasing V/Ⅲratio,the surface morphology and crystal quality first improved and then deteriorated,and the density of the basal-plane stacking faults also first decreased and then increased.The optimal V/Ⅲratio growth condition for the best surface morphology and crystalline quality and the smallest basalplane stacking fault density of a-GaN films are found.We also found that the formation of basal-plane stacking faults is an effective way to release strain.  相似文献   
6.
The aluminum incorporation efficiencies in nonpolar A-plane and polar C-plane AlGaN films grown by metalorganic vapour phase epitaxy(MOVPE) are investigated. It is found that the aluminum content in A-plane AlGaN film is obviously higher than that in the C-plane sample when the growth temperature is above 1070?C. The high aluminum incorporation efficiency is beneficial to fabricating deep ultraviolet optoelectronic devices. Moreover, the influences of the gas inlet ratio,the Ⅴ/Ⅲ ratio, and the chamber pressure on the aluminum content are studied. The results are important for growing the AlGaN films, especially nonpolar AlGaN epilayers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号