首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   8篇
  国内免费   132篇
化学   180篇
晶体学   2篇
力学   1篇
物理学   19篇
  2024年   2篇
  2022年   5篇
  2021年   3篇
  2020年   11篇
  2019年   7篇
  2018年   6篇
  2017年   3篇
  2016年   9篇
  2015年   15篇
  2014年   13篇
  2013年   25篇
  2012年   15篇
  2011年   14篇
  2010年   18篇
  2009年   13篇
  2008年   13篇
  2007年   3篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
1.
催化剂的形成和使用环境对催化剂的结构和性能会产生重要的影响.我们采用完全液相法,以PEG-400和液体石蜡分别作为热处理介质制备Cu-Zn-Al催化剂,用X射线粉末衍射、H2程序升温还原、N2吸附、X射线光电子能谱对其进行表征,考察热处理介质对催化剂结构的影响;以相应的热处理介质作为浆态床反应介质,考察介质对CO加氢催化反应性能的影响.结果表明,PEG-400作为热处理介质有助于提高催化剂的比表面积、Zn O的分散度和表面铜含量,催化剂中存在难还原的Cu+,有利于形成Cu+-Cu0之间的协同作用;在反应过程中,PEG-400作为反应介质可以抑制铜晶粒的长大,有利于乙醇的生成及C5烃选择性的提高,但催化剂的结构和表面组成会发生较大的变化.  相似文献   
2.
采用并流共沉淀法制备了不同Zr/Cd原子比(nZr/nCd)的ZrCdOx金属氧化物,并与水热法制备的不同硅铝比(nSiO_(2)/nAl_(2O3))的片状SAPO-18分子筛物理混合制得ZrCdOx/SAPO-18双功能催化剂,研究了其催化CO2加氢直接合成低碳烯烃性能。采用透射电子显微镜(TEM)、X射线衍射(XRD)、N2吸附-脱附、CO2程序升温脱附(CO2-TPD)、NH3程序升温脱附(NH3-TPD)和X射线光电子能谱(XPS)对催化剂进行了分析。与单一ZrO2相比,引入CdO使得ZrCdOx比表面积下降,当nZr/nCd=8时制备的Zr8Cd1氧化物呈现出无定形小颗粒状,Zr与Cd之间较强的协同作用使得Zr Cd Ox氧化物产生了更多的氧空位,有利于CO2的吸附活化。通过对Zr8Cd1金属氧化物与SAPO-18(硅铝比0.1)的质量比、工艺反应温度、压力和空速对催化性能影响的考察,获得了最佳反应条件。研究还发现,当SAPO-18的硅铝比从0.1降为0.01时,Br?nsted酸含量降低,产物中烯烃/烷烃物质的量之比从18.6提高至37.2,但副产物CO含量迅速增加,低碳烯烃时空收率明显下降。  相似文献   
3.
采用不同老化温度(80、100、120和150℃)合成了一系列KIT-6载体,并通过浸渍法制备了相应的CeO_2/KIT-6催化剂。结合X射线衍射、N_2物理吸附、NH_3程序升温脱附、CO_2程序升温脱附、透射电子显微镜、傅里叶变换红外光谱和X射线光电子能谱等表征结果,详细考察了老化温度对KIT-6结构以及CeO_2/KIT-6催化剂直接催化CO_2和甲醇合成碳酸二甲酯(DMC)反应活性的影响。结果表明,不同老化温度下制备的KIT-6均保持其独特的三维孔道结构。随着老化温度升高,KIT-6比表面积先增大后减小,当老化温度为100℃时,KIT-6比表面积达到最大(683 m~2·g~(-1))。KIT-6较高的比表面积有利于提高CeO_2分散度,进而提高暴露的活性位点数量,催化活性随催化剂表面中等碱/酸性吸附位数量和Ce~(3+)含量的增加而逐渐提高。其中,CeO_2/100-KIT-6催化剂中CeO_2颗粒尺寸最小(5.9 nm),暴露的活性位数量最高,催化活性最佳。随后,考察了反应温度和压力对CeO_2/100-KIT-6催化活性的影响。随着反应温度提高,催化活性先升高后降低,当反应温度为140℃时,催化活性最高;且催化活性随反应压力的提高而逐渐增加。在反应温度为140℃、压力为6.8 MPa条件下,催化剂经6次循环后,DMC收率由15 mmol·g_(CeO_2)~(-1)逐渐降低至2.8 mmol·g_(CeO_2)~(-1),原因归结为反应过程中CeO_2纳米颗粒发生团聚,使暴露出的活性位数量减少。  相似文献   
4.
利用水热法制备了3种AlOOH催化剂,对其进行了表征,并用于催化甲醇和一氧化碳反应.结果表明,适宜的AlOOH结构有利于催化甲醇和一氧化碳反应生成高选择性(≥97.28%)的乙醛,且AlOOH结构的差异会导致反应产物分布出现明显区别.其中,结晶度高、孔径较大、能提供CO解离吸附中心且表面具有适宜酸碱性的AlOOH催化剂表现出高的乙醛选择性,推测乙醛的生成是通过中间体CH_3与HCO的偶联实现的.  相似文献   
5.
采用软模板法,通过调变碳源甲醛和间苯二酚的摩尔比,制备了3种不同有序度的介孔碳;并以其为载体,采用超声辅助等体积浸渍法制备了Cu Co Ce/介孔碳催化剂;考察了孔道结构有序度对其催化合成气制低碳醇性能的影响.采用X射线衍射(XRD)分析、N2吸附-脱附实验、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等对催化剂进行了表征.实验结果表明,随着介孔碳有序度的提高,催化活性呈增加趋势.以高度有序的介孔碳作为载体时,低碳醇的时空收率和选择性分别达到849.96 mg·g-1cat·h-1和50.48%,醇产物中C2+OH比例达到90.31%.研究表明,孔道结构影响了活性金属在载体上的分布及存在状态.规整有序的二维六方直通孔结构有利于活性组分Cu Co的均匀分散并使其紧密结合,促进了二者之间的电子转移,进而有效抑制了碳链的持续增长,使催化剂的活性明显提高,并缩窄了醇产物的分布.  相似文献   
6.
采用不同类型的有机硅烷化SiO2作为基本合成单元,制备了具有晶内中孔的A型沸石。考察了反应碱度、Si/Al比、晶化时间等合成条件对产品的影响。结果表明,苯胺基丙基三甲氧基硅烷是合成中孔A型沸石的最佳硅烷化试剂;硅烷化试剂的应用,使中孔沸石晶化过程可以通过"键阻断原理"有效控制;沸石的中孔尺寸可以通过不同类型的有机硅烷化试剂进行调控;一定范围内,其外比表面积、中孔体积随SiO2表面硅烷化度的增加而增加。通过沸石晶化过程中的"键阻断",可以制备具有晶内中孔的A型沸石。  相似文献   
7.
采用不同类型的有机硅烷化SiO2作为基本合成单元, 制备了具有晶内中孔的A型沸石。考察了反应碱度、Si/Al比、晶化时间等合成条件对产品的影响。结果表明, 甲氨基丙基三甲氧基硅烷是合成中孔A型沸石的最佳硅烷化试剂;硅烷化试剂的应用, 使中孔沸石晶化过程可以通过“键阻断原理”有效控制;沸石的中孔尺寸可以通过不同类型的有机硅烷化试剂进行调控; 一定范围内, 其外比表面积、中孔体积随SiO2表面硅烷化度的增加而增加。通过沸石晶化过程中的“键阻断”, 可以制备具有晶内中孔的A型沸石。  相似文献   
8.
利用XANES技术研究了酸处理对义马煤的比表面积、体相及表面硫形态分布和热解过程中硫变迁行为的影响。结果表明,由于酸处理过程中部分镶嵌于有机质中的矿物质被脱除导致部分闭合孔打开,煤的比表面积有所增大。HCl-HF和HCl-HF-HNO_3处理脱除了煤中大部分矿物质和无机硫,由于HNO_3的强氧化性,YMN中亚砜和砜硫化物的相对含量均高于YMR和YMD。相比煤样体相,酸处理过程对表面形态硫的分布产生了更为明显的影响。酸处理煤样热解含硫气体释放量减少,但由于大部分碱性矿物质的脱除和煤中易分解形态硫相对含量的增加,含硫气体释放率增加。不同形态硫之间的内部转化使得酸处理煤焦中主要形态硫的分布更为均匀。通过HCl-HF-HNO_3处理可以有效地脱除煤中矿物质及无机硫,并改变煤中形态硫分布,从而为高灰分、富含黄铁矿的高硫煤的利用提供指导。  相似文献   
9.
采用程序升温还原法和次磷酸盐歧化法制备了Ni_2P/SiO_2催化剂,结合现代仪器分析表征技术,研究了制备方法对Ni_2P/SiO_2催化剂结构和萘加氢性能的影响。结果表明,两种方法均可制备出仅含Ni_2P活性相的Ni_2P/SiO_2催化剂,在反应温度340℃、氢气压力4 MPa、空速为20.8 h~(-1)下,程序升温还原法制备的Ni_2P/SiO_2催化剂表现出更高的萘加氢活性,这主要是因为程序还原法制备的Ni_2P/SiO_2催化剂中有更多Ni_2P物种生成,提供了较多的活性位点(CO吸附量21.6μmol/g);且催化剂表面弱酸位点多,有利于芳烃吸附。当选用程序升温还原法制备Ni_2P/SiO_2催化剂时,在保证生成纯相Ni_2P的前提下,较低的Ni/P比更有利于合成高加氢活性的Ni_2P/SiO_2催化剂。  相似文献   
10.
炼厂干气中回收乙烯是扩宽C2H4来源的有效途径,但C2H4和C2H6物理性质和分子尺寸非常接近,分离困难.金属有机骨架材料(MOFs)近年来在低碳烃分离领域展现出广阔的前景.本工作采用氨吸附改性调节UTSA-280的结构,通过一维直孔道大小的调节实现C2H4/C2H6的高效分离.改性后的UTSA-280具有独特的超微孔结构能提升C2H4的吸附,而完全不吸附稍大的C2H6,实现理想的C2H4/C2H6吸附选择性(>1000).结果表明,改性后的UTSA-280的C2H4吸附量可提高至2.83 mmol/g,与未改性的材料相比增加29%,并且能阻挡C2H6的吸附,最终达到>1200的C2H4/C2H6选择性.蒙特卡罗分子模拟(GCMC)计算C2H4/C2H6混合气体(1:1)的吸附得出,改性后UTSA-280孔内的C2H4吸附相比于C2H6具有更多的吸附分布.通过C2H4/C2H6混合气体穿透实验测试,改性后的UTSA-280材料能展现出48 min以上的分离时间,相比于未改性的材料,分离性能提升近1倍.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号