首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
利用红外、拉曼、热重及XANES等技术对不同煤阶高硫炼焦煤的化学结构、原煤及焦样形态硫分布进行了准确判定,对煤中化学结构及硫赋存形态与硫的热变迁行为进行了关联分析。结果表明,高硫炼焦煤中硫的热变迁行为不仅与硫赋存形态有关,而且受化学结构不同的高硫炼焦煤热解挥发分释放特性的影响。较低煤阶高硫炼焦煤中脂肪结构热分解产生大量挥发分,且挥发分释放温区较宽,形态硫分解产生的活性硫与挥发分中富氢组分相结合,形成更多的含硫气体转移到气相中,提高了热解脱硫率,焦炭体相中噻吩硫相对含量高于表面,硫化物硫则与之相反。煤化程度升高,煤中稳定噻吩类硫含量增多,挥发分释放量减少,热解脱硫率降低,且形态硫在焦炭体相与表面的分布差异不明显。无机硫脱除率与黄铁矿硫分解程度直接相关,热解过程中也将形成部分新的无机硫滞留于焦中。煤结构及有机硫的赋存形态决定了有机硫脱除率,煤阶升高时有机硫脱除率明显降低。  相似文献   

2.
为了考察逐级酸处理对锡盟褐煤热解过程中气相产物生成的影响,对锡盟褐煤进行了HF-HNO3-HCl逐级处理,原煤和酸处理煤样采用固定床热解-气相色谱法在线分析气相产物释放行为和变化的研究。结果表明,逐级酸处理过程对锡盟褐煤热解过程中含氢气体、含氧气体和含硫气体的释放有着明显的影响。不同气体的形成途径、形成阶段和温区不同,导致酸处理过程对其的影响有明显的差异。逐级酸处理的煤样,除因矿物质对煤热解气相产物的影响减弱外,HNO3处理样还因其氧化作用引起了气相产物释放趋势的变化,使得含氢气体的释放量降低、含氧气体释放量增加;降低了H2S的累积释放转化率而促进COS的释放。  相似文献   

3.
利用固定床反应器研究了哈密煤温和液化固体产物(MLS)在热解过程中含硫气体的释放规律以及不同形态硫的变迁规律,并分析了矿物质对硫变迁规律的影响。结果表明,在实验考察的条件范围内,MLS热解过程中大部分的硫残留在半焦中,仅有不到10%的硫迁移到焦油中或转化为含硫气体逸出。热解生成的含硫气体以H2S为主,当热解温度为400℃时H2S的逸出速率达到最大。通过改进方法测定了M LS及其热解半焦中各种形态硫的含量,发现M LS热解过程中以硫化物硫和有机硫的分解和转化为主。随着热解温度的升高,MLS中有机硫逐渐分解并以含硫气体的形式逸出;当热解温度低于600℃时,M LS中硫化物硫逐渐转化为含硫气体、有机硫和少量的黄铁矿硫;当热解温度高于600℃时,M LS中碱性矿物质吸收气相中的H2S转化为硫化物硫,硫化物硫缓慢增加。醋酸酸洗可以保留M LS中大部分的硫化物硫,且酸洗后M LS热解生成的H2S逸出速率增大,峰温向低温方向移动;当热解温度高于600℃时,有机硫和硫化物硫的脱硫反应速率降低,并且M LS中的碱性矿物质与H2S反应生成金属硫化物,导致H2S逸出速率明显降低。  相似文献   

4.
利用固定床反应器研究了哈密煤温和液化固体产物(MLS)在热解过程中含硫气体的释放规律以及不同形态硫的变迁规律,并分析了矿物质对硫变迁规律的影响。结果表明,在实验考察的条件范围内,MLS热解过程中大部分的硫残留在半焦中,仅有不到10%的硫迁移到焦油中或转化为含硫气体逸出。热解生成的含硫气体以H2S为主,当热解温度为400℃时H2S的逸出速率达到最大。通过改进方法测定了MLS及其热解半焦中各种形态硫的含量,发现MLS热解过程中以硫化物硫和有机硫的分解和转化为主。随着热解温度的升高,MLS中有机硫逐渐分解并以含硫气体的形式逸出;当热解温度低于600℃时,MLS中硫化物硫逐渐转化为含硫气体、有机硫和少量的黄铁矿硫;当热解温度高于600℃时,MLS中碱性矿物质吸收气相中的H2S转化为硫化物硫,硫化物硫缓慢增加。醋酸酸洗可以保留MLS中大部分的硫化物硫,且酸洗后MLS热解生成的H2S逸出速率增大,峰温向低温方向移动;当热解温度高于600℃时,有机硫和硫化物硫的脱硫反应速率降低,并且MLS中的碱性矿物质与H2S反应生成金属硫化物,导致H2S逸出速率明显降低。  相似文献   

5.
利用坩埚焦考察了过渡金属添加剂Fe、Cr和Mn的不同形态在焦化过程中对高硫焦煤中硫脱除的影响,并通过固定床热解实验考察了不同气氛下添加剂对煤热解脱硫及含硫化合物逸出的影响。结果表明,不同金属添加剂对煤中硫形态有不同影响,氧化性较高的Fe3+降低了煤中黄铁矿硫的含量,而其他金属添加剂对煤中硫形态影响不大。在模拟焦化过程中,铬系添加剂提高了热解脱硫率,而铁系和锰系添加剂降低了脱硫率;负载Cr3+的介休煤在不同气氛下的热解表明,氮气抑制了Cr的脱硫作用,显著地减少了含硫气体的生成量,并使煤中易脱除硫转化为稳定的有机硫;还原性气氛有利于Cr3+添加剂的脱硫作用,显著地增加了含硫气体的生成量;焦炉气和氢气下添加剂对热解脱硫及煤热解过程中含硫气体逸出的影响相似,焦炉气可以作为提高过渡金属添加剂脱硫性能的反应气体。  相似文献   

6.
利用微型流化床反应分析仪(MFBRA),开展了两种山西高硫无烟煤的热解脱硫实验。通过对含硫气体动态释放的在线快速检测、结合原料煤和热解半焦的形态硫以及含硫组分的X射线光电子能谱(XPS)分析,研究了含硫气体释放特征及相应半焦含硫组分在热解过程中的变化,重点探讨了高硫无烟煤在氢气气氛下各含硫组分的动态释放和相互转化过程及规律。研究结果表明,高硫无烟煤有机硫含量越高,在氢气气氛下的脱硫效率越高;两种高硫无烟煤在氢气气氛下热解硫释放均呈现两个阶段,对应热解脱硫峰值温度分别为530-560℃和812-830℃。第一阶段由黄铁矿的还原反应引起,第二阶段以有机硫裂解为主;在低温热解条件下高硫无烟煤中无机硫会向有机硫转变,而在较高温度下发生不同形态有机硫之间的迁移。本研究结果将为高硫无烟煤制备低硫煤的技术开发提供方法指导和基础数据。  相似文献   

7.
利用重介质分选法分别将两种高有机硫炼焦煤分选为密度范围不同的五个组分。采用X射线光电子能谱仪(XPS)、核磁共振波谱仪(13C NMR)和热解质谱联用技术(Py-MS)探究不同分选组分中硫的赋存形态及其热变迁行为。结果表明,不同分选组分中硫的分布、赋存形态及其所处化学环境存在显著差异。有机硫主要分布在低密度组分(D1)中,且以噻吩硫的形式存在;无机硫作为矿物质组分主要分布于高密度组分(D5)中。随着分选组分密度的增大,其脂肪碳的比例降低,芳香碳的比例增加,D1中硫醇、硫醚等硫化物的含量明显增加。热解过程中脂肪碳结构裂解生成的挥发分促进含硫气体的释放,进而提高了D1的脱硫效率,D5中硫的热变迁行为则主要受煤中矿物质的影响。  相似文献   

8.
以兖州烟煤和红庙褐煤为考察对象,在加压固定床上压力为3MPa,温度从350~650℃范围内,研究了加氢热解以及氮气下热解过程中硫在半焦、焦油中的含量以及脱硫率和硫分布的变迁规律。实验表明,加氢热解比氮气下热解有着更好的脱硫作用,有利于降低半焦中的硫含量。这种脱硫作用随煤种的不同而不同,尤其受到煤中矿物质的显著影响。因此红庙煤加氢热解焦油中硫含量显著降低,半焦的硫含量随温度的升高,先逐渐降低然后增加;而兖州煤一直呈下降趋势。XRD分析表明,红庙煤在加氢热解条件下,碱性矿物质与H2S反应而产生的硫化物主要是FeS和CaS。从兖州煤的脱硫率曲线可以得出,加氢热解不仅有利于易分解脂肪类含硫化合物的脱除,而且可以促使难分解噻吩芳香类含硫化合物的脱除。  相似文献   

9.
利用ZnCl_2溶液将两种气煤分别分选为不同镜质组含量的四种组分,通过核磁共振波谱(13C NMR)、煤岩分析仪、X射线荧光光谱(XRF)和基氏流动仪等表征分析了分选组分的炭结构、显微岩相组成、灰成分和胶质体行为,结合X射线光电子能谱仪(XPS)探讨了不同气煤分选组分对高硫煤硫分热变迁行为及焦炭中形态硫分布的影响。结果表明,随着气煤中镜质组含量的增加,脂肪碳比例增大,热解过程中挥发分释放量增多,其中的氢自由基促进了形态硫的分解且及时稳定生成的硫自由基,形成含硫气体释放,使焦中硫含量降低;气煤中低密度组分的最大流动度最大、塑性区间最宽,与高硫煤共热解过程中胶质体稳定性最好;气煤中碱性矿物质主要富集在高密度组分中,导致共热解焦中硫化物硫和硫酸盐硫增加;共热解过程中,富集气煤中镜质组和选用碱性矿物质易脱除的煤种有利于焦中硫分的降低。  相似文献   

10.
用HCl和HNO3对不同煤阶(褐煤、烟煤、无烟煤)的七种煤进行了部分矿物质的脱除处理,获得的样品主要含硅铝矿物质。通过程序升温热解和程序升温氧化两个过程,结合含碳量的差别,对煤热解过程中煤中硅铝对硫在焦中的残留状况的影响进行了研究。结果表明,脱除了其他矿物质的煤其煤化程度和硅铝比共同影响热解过程中焦中硫的残留率。焦中硫的残留率随样品含碳量增加而增加,但在煤的含碳量90%左右发生转折。这与煤的其他物理性质(如孔隙率、可磨性、质量热容、介电常数、溶剂溶胀率)类似,与煤结构在这点附近的较大变化有关。对应于各自煤阶,由于硅对气相含硫产物与半焦二次反应的抑制作用,焦中硫的残留率随着Si/Al质量比的增加而减少。  相似文献   

11.
采用热解-质谱(Py-MS)与热解-气相色谱(Py-GC)相结合的方法对平朔(PS)和义马(YM)原煤、脱灰煤及其脱黄铁矿煤进行了热解实验,考察了CO_2气氛对煤热解过程中硫逸出行为的影响。并采用质谱在线分析H_2S、COS和SO_2的逸出曲线,利用气相色谱分析H_2S、COS和SO_2在气相中的逸出量。结果表明,CO_2气氛有利于H_2S、COS和SO_2进入气相,且逸出量增加,而COS增加幅度更大。同时,CO_2气氛有利于H_2S和SO_2最大逸出峰温提前。另外,CO_2气氛对原煤的H_2S、COS和SO_2逸出温度影响较大,但对脱灰煤的影响较小。在较高的温度下,CO_2有利于煤中稳定有机硫的分解。这进一步验证了在较高温度下COS形成与CO相关,而在较低温度下与CO无关。  相似文献   

12.
在加压热解装置上,考察了碳酸钾及热解气氛对煤热解过程中硫分布及其形态的影响。结果表明,碳酸钾通过捕获H_2S增加了半焦硫含量,同时可将煤焦表面活化,导致煤中有机质与黄铁矿分解产生的活泼硫结合形成新的有机硫。氢气能促进煤中硫的脱除,但是碳酸钾存在下热解释放的硫一部分以K_2S的形式固定于半焦中。水蒸气可显著促进煤中黄铁矿的分解,同时可与煤焦中的K_2S反应,降低半焦中的硫含量。两段床催化气化炉中,碳酸钾催化剂经热解后不影响其对煤焦的催化性能。  相似文献   

13.
选择3种典型煤种为研究对象,通过脱灰和添加含Fe、Ca、Na等金属盐,研究煤热解过程中金属离子对含氮气相产物析出特性的影响以及与煤种和温度的交互关联。结果表明,脱灰煤HCN和NH3的产率均比原煤样下降,而随温度的升高HCN的产率逐渐增大,NH3的产率则先增加后减小,在800℃有最大值。金属离子对不同变质程度煤的含氮气相产物析出的催化作用不同;Fe和Na抑制中等变质程度煤HCN的析出,而对低变质程度煤起促进作用,Ca则对HCN的析出均有一定的促进作用。而对于NH3的形成,3种离子均对中等变质程度煤有抑制作用,而对低变质程度的煤则有促进作用。不同金属离子对HCN和NH3析出的催化作用均有一定的范围。煤热解时含氮气相产物的析出是煤中固有多种金属离子共同作用的结果。  相似文献   

14.
实验选取六枝(LZ)原煤及其在固定床热解所得半焦,采用常压程序升温还原 质谱法(AP-TPR-MS)与化学法相结合考察温度和气氛对固定床热解过程中硫变迁行为的影响。对于LZ煤而言,经氮气气氛500℃热解后,只能使煤中部分不稳定有机硫分解,黄铁矿硫却不能分解;而经氮气气氛700℃热解后可以使不稳定有机硫和黄铁矿硫全部分解。合成气气氛在500℃以前煤中的不稳定有机硫和黄铁矿硫就能全部分解,且随着温度的升高,合成气表现出与氢气相近的脱硫活性。1.0% O2-N2对于六枝煤并没有明显的脱硫效果,这与氮气气氛相差不大。  相似文献   

15.
采用热重-质谱法(TG-MS)和热解-气相色谱法(Py-MS)相结合的方法对模型化合物(十四硫醇、二丁基硫醚、苯硫醚、二甲基噻吩、苯并噻吩和二苯并噻吩等)在惰性气氛下硫的脱除及释放行为进行研究。惰性气氛下硫的脱除顺序为:十四硫醇>二丁基硫醚>二甲基噻吩>苯并噻吩>苯硫醚>二苯并噻吩,苯硫醚除外,该顺序与含硫官能团的热分解顺序一致。在热解过程中,所有模型化合物在质谱和气相色谱仪上均被检测到SO2;除苯硫醚和二苯并噻吩外,其他模型化合物中均检测到了COS;而只在十四硫醇、二丁基硫醚和二甲基噻吩中检测到了H2S。且热解气中SO2含量要显著高于H2S和COS。这是由于活性炭作载体时,惰性气氛下内部氢的含量显著小于内部氧的含量,所以大多数的含硫自由基易与内部氧结合以SO2的形式逸出。对于苯硫醚、苯并噻吩和二苯并噻吩中没有检测到H2S,是由于内部氢的不足,使得含硫自由基不能与内部氢结合,所以没有检测到H2S逸出。  相似文献   

16.
利用固定床热解反应装置,研究了平朔、兖州、神华、黑代沟、义马、霍林河和曲靖七种煤中硒在氮气气氛下,200℃~1000℃的热稳定性,考察了加热速率、终温停留时间、气氛(氮气、空气与氢气)对黑代沟和霍林河煤中硒释放规律的影响。结果表明,热解条件下煤中硒主要在700℃以下释放,700℃时的释放率为34%~63%。烟煤中硒的释放峰温在500℃左右,而褐煤中硒的释放峰温在400℃左右。500℃以上,加热速率对煤中硒的释放有一定的影响,较低的加热速率可获得较高释放率;终温1000℃时,停留时间从0延长至15min可明显提高硒的释放率,继续延长停留时间,硒的释放率没有进一步提高。与氮气气氛相比,空气气氛明显促进硒的释放,氢气气氛次之。在热解实验条件下,七种煤中的硒均没有在半焦中富集。  相似文献   

17.
利用XRD、Raman、XPS和FT-IR表征技术,研究无机酸洗脱(HCl、H2SO4、HCl-HF)处理的胜利褐煤微晶结构的变化,采用自行设计的表面吸附仪-GC联用装置,对样品进行不同温度的低温脉冲氧化实验,考察了煤样在不同温度下氧吸附量的变化规律,通过低温脉冲氧吸附规律与TG/DTG和固定床燃烧实验关联,考察了煤样的自燃倾向。结果表明,无机酸洗脱对矿物质的脱除使得煤结构的有序度增加,石墨化程度提高,无机酸洗脱煤样与原煤相比吸氧量明显下降。随着吸附温度的升高,各煤样吸氧量明显增加,且随着脱除矿物质程度的增加,吸氧量呈减小的趋势,导致自燃倾向降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号