首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   11篇
化学   11篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
程蕾  张岱南  廖宇龙  范佳杰  向全军 《催化学报》2021,42(1):131-140,后插16-后插21
近年来,光催化CO2还原被视为一种既能解决能源短缺又能减少温室气体,改善人类生存环境的绿色新型技术.然而,由于CO2气体的相对稳定性,构建高催化活性和高选择性的催化体系仍然面临着巨大挑战.锌硫镉固溶体作为一种廉价的固溶类材料,具有吸光范围适宜、化学性质稳定以及能带结构可调控等特点,在光催化还原CO2的方面表现出巨大的潜力.本文发展了一种简单的原位自组装法合成三维分等级花状结构的Cd0.8Zn0.2S,主要包括Cd^2+和Zn^2+离子在含硫氛围下自组装成核状前体,然后以柠檬酸钠作为形貌诱导剂进一步组装生长,同时控制Cd2+/Zn2+摩尔比和反应时间以实现三维分等级花状Cd0.8Zn0.2S的合成.结果表明,三维分等级花状结构的Cd0.8Zn0.2S在光催化还原CO2的过程中表现出优异的催化活性和稳定性.其中,在光照3 h后,CO产量达到41.4μmol g^?1,大约是相同光照条件下Cd0.8Zn0.2S纳米颗粒的三倍(14.7μmol g^?1).此外,三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中展现出对光催化产物CO的较高选择性(89.9%),其中在没有任何牺牲剂或共催化剂作用下的TON为39.6.太赫兹时域光谱(THz-TDS)表明,这种三维分等级花状结构的Cd0.8Zn0.2S相较于Cd0.8Zn0.2S纳米颗粒更有利于对光的吸收,从而提高对光的有效利用率.原位漫反射傅立叶变化红外光谱表征分析揭示了三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中表面吸附物质以及光催化还原中间体的存在及转化.通过实验数据和理论机理预测表明,该种三维分等级花状结构的Cd0.8Zn0.2S具有较高的电流密度和较好的载流子传输能力.基于这种三维的花状结构,使得Cd0.8Zn0.2S具有较大的比表面积和吸附位点,进一步提升体系的CO2吸附性能和光生电子的转移效率,从而有效提高光催化CO2还原的活性.  相似文献   
2.
MnCl2、LiOH、EDTA和NaClO混合溶液一步水热反应合成锂离子电池正极材料正交LiMnO2(o-LiMnO2),进一步在反应体系中添加碳纳米管(CNTs)制备碳纳米管改性的o-LiMnO2(o-LiMnO2/CNTs复合材料)。采用X-射线衍射和扫描/透射电镜表征产物的晶体结构、微观形貌,循环伏安法和恒流充放电测试得活性材料电化学性能。结果表明,体系中nLi:nMn控制为8:1,在180℃反应24h得到目标产物;反应体系中添加CNTs形成复合材料可降低o-LiMnO2颗粒粒径、提高导电率。o-LiMnO2首次放电容量为76.0mAh·g-1,100周后容量保持为124.1mAh·g-1;o-LiMnO2/CNTs复合材料首次及100周放电容量(基于o-LiMnO2/CNTs的质量)分别高达94.1和159.8mAh·g-1。  相似文献   
3.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   
4.
向全军  余家国 《催化学报》2011,32(4):525-531
以钛酸盐纳米管为前驱体,在HF-H2O-C2H5OH的混合溶液中,采用一种简单的醇热方法合成了具有87%暴露{001}面的TiO2纳米片自组装形成的分等级花状TiO2超结构.运用X射线衍射、扫描电镜、透射电镜和N2吸附-脱附等方法对样品进行了表征,并在紫外光照射下于空气和溶液中分别考察了其光催化降解丙酮和甲基橙反应活性...  相似文献   
5.
近年来,化石能源的持续使用导致能源短缺和环境污染问题日益突出,因此,人们一直致力于开发新的清洁可再生替代能源.其中,氢气因其燃烧热值高、燃烧产物无污染等优点被认为是最具发展潜力的清洁能源之一.自从1972年日本东京大学Fujishima教授和Honda教授首次发现TiO_2单晶电极光催化分解水可以产生氢气以来,非均相光催化制氢被认为是实现可持续制氢最有潜力的方法之一.然而,由于光催化剂普遍存在缺少活性中心、表面反应速率低、光生载流子快速复合、热力学势垒高等制约因素,因此如何在光催化产氢反应中提高催化剂的量子效率和稳定性仍是目前所面临的一项巨大挑战.将电催化剂(用作助催化剂)负载到不同的半导体表面后,其表现出较高的光催化分解水产氢活性和稳定性.一般来说,采用贵金属(如铂、金和银)作为助催化剂可有效地提高半导体的光催化产氢性能.然而,贵金属成本高、丰度低,大大限制了其广泛应用.在非贵金属中,镍基助催化剂因其成本低、活性高、稳定性好而表现出较好的应用前景.本文主要针对用于光催化制氢反应的镍基助催化剂进行综述.首先,对镍基助催化剂的光催化动力学研究进行了总结,从光捕获、光生载流子的分离、半导体的本体及界面电荷输运、助催化剂捕获载流子及其表面电催化反应等过程进行详细分析,发现协同考虑和优化上述过程是开发高效产氢光催化剂的关键.同时,通过不同方法对催化剂改性并担载合适的镍基助催化剂,从而集成设计光催化剂是一种具有较好应用前景的策略.然后,对镍基电催化剂在催化制氢反应中应用的基本原理进行分析,系统地从组成工程、纳米结构工程、界面工程、表面工程和杂化工程方面综述了电催化剂的设计策略;并对镍基助催化剂的作用进行分析,包括:增加析氢活性中心,降低活化能,提高光催化效率,促进电荷的分离和传输,降低电化学析氢过电位和增强催化析氢动力学等.同时,对镍基助催化剂活性位的原位表征及反应路径相关文献进行了简要总结.通过上述分析得出以下结论:为设计高效的光催化产氢催化剂体系,需要综合考虑并优化镍基助催化剂表面的电催化产氢性能、捕光半导体中的电荷分离/转移及它们之间的界面电荷分离性能.本文着重对基于提高光捕获率(包括设计分级光催化剂、利用表面敏化和开发宽光谱光催化剂)、增强电荷分离(包括设计纳米结构、构建肖特基结、构造II/p-n型异质结和建立直接Z型异质结)、增强半导体/助催化剂的界面相互作用、提高助催化剂的电催化活性(包括增加活性位数量、加强单个活性位本征活性和实现高分散/限阈效应)四种改性策略进行了较详细的讨论和比较,为设计高活性和高稳定性的镍基产氢光催化剂提供了新的设计思路.最后,对镍基产氢助催化剂进行了展望.一方面,进一步开发新型镍基析氢助催化剂和半导体异质结,通过调节和优化助催化剂的半导体/助催化剂界面结构和电导率,从而达到最优光催化效率.同时,应尝试通过工艺简单、易规模化的方法制备更多金属、多功能、超薄二维镍基纳米片、核壳和限制性纳米结构及单原子等催化剂体系,并将其应用于开发高效的光催化制氢催化剂.另一方面,进一步采用多种原位表征技术,如XAS研究、EPR测试和拉曼光谱技术等,精准地分析镍基催化剂上的析氢活性中心,深入分析不同异质结和助催化剂中的电荷载流子转移/分离动力学.同时,通过DFT精确计算反应势垒、氢吸附能和水分子吸附/解离特性等相关信息,进而充分理解电荷载流子动力学和反应途径,明确镍基助催化剂活性中心表面电催化反应机理.希望在不远的将来,根据镍基析氢活性中心的详细结构与性能关系,可以精准地设计、构建高效的镍基析氢活性中心,为高效光催化产氢,并为最终开发新的清洁可再生替代能源提供效的催化技术.  相似文献   
6.
由于氢气燃烧具有高能量和零污染的优点,氢能一直被认为是解决环境污染和全球能源危机问题的新能源.而光催化剂可以将太阳能转化为氢能,是目前制氢最理想的方式.近年来,研究者们的目光已经转向非金属光催化剂,其中氮化碳光催化剂因其化学稳定性好、成本低和无毒性而备受关注.但是传统的利用含氮前驱体通过热聚合得到的氮化碳呈无定形或半结晶结构,导致其光催化活性很差.而熔盐法制备的结晶氮化碳(CCN)则具有优异的光催化产氢性能.但是,熔盐法得到的CCN依然没达到理想的结晶度.在本文中,我们用盐酸(HCl)洗涤处理熔盐法制备的产物,进一步提高了CCN的结晶度.结果表明,随着盐酸水溶液浓度的增加,制备样品的结晶度增大,在盐酸浓度为0.1 mol/L时,样品结晶度达到最大值.这是因为盐酸水溶液可以去除CCN末端氨基中的一些钾离子,导致聚合位点被释放,所以进一步提高了样品的结晶度.而当盐酸浓度进一步提高到0.2 mol/L时,氮化碳结构因为过高的盐酸浓度被破坏,导致结晶度反而下降.以0.1 mol/L盐酸水溶液处理得到的0.1HCCN样品具有良好的光催化产氢性能,在以三乙醇胺为牺牲剂时,其光催化产氢速率达到683.54μmol h^-1 g^-1,在420 nm处的量子效率为6.6%,光催化产氢速率分别是CCN和块状氮化碳的2倍和10倍.光催化活性的提高主要有两个原因:样品结晶度的提高和钾离子嵌入xHCCN样品的中间层.其中,样品结晶度的提高可以减少样品中的表面缺陷以及破坏结构中的氢键,从而增加了光生载流子的迁移,减少了电子空穴对的复合位点,这都非常有利于光催化反应的进行.而插入到xHCCN中间层的钾也促进了光生电子的转移.这是因为桥连的氮原子(N1)并不会被激发产生光生电子,因此抑制了光生电子在七嗪单元之间的迁移,而插入到xHCCN中间层的K可以增加电子的离域性,延长π共轭体系,从而促进光生电子的转移,进一步提高光催化产氢活性.本研究为熔盐法的进一步发展提供了新的思路.  相似文献   
7.
开发低成本的半导体光催化剂以实现可见光下高效、持久的光催化分解水产氢化是一个非常具有挑战性的课题.近年来,具有孪晶结构的ZnxCd1-xS(ZCS)固溶体引起了人们的研究兴趣,这主要是由于孪晶相之间形成了同质结,同质结可以通过提高体相光生电子-空穴对的分离效率,从而提高原始硫化物光催化剂的光催化分解水产氢活性.但由于孪晶ZCS固溶体表面超快载流子复合以及活性位点不足,进一步提高其光催化析氢活性还需解决这些不足.负载助催化剂被认为是加速产氢动力学和促进表面光生电子空穴分离最有效策略之一.因此,我们将低成本的类金属Ni3C助催化剂与孪晶ZCS固溶体通过简单的研磨方法结合来实现高效的可见光催化分解水产氢.合成的Zn0.5Cd0.5S-1%Ni3C(ZCS-1)异质结/同质结最高的可见光光催化分解水产氢速率可达783μmol h–1,是纯ZCS的2.88倍.在420 nm时,ZCS和ZCS-1的表观量子效率分别为6.13%和19.25%.这是由于孪晶ZCS固溶体中闪锌矿段和纤锌矿段的同质结连接可以显著提高光生电子空穴对的体相转移和分离.同时,ZCS与金属Ni3C助催化剂间的异质结可以有效地增加孪晶ZCS固溶体的光捕获及表面载流子分离,增强产氢活性位,从而提高催化活性.本文以乙酸镉、乙酸锌和氢氧化钠为原料合成了CdZn(OH),后者与硫代乙酰胺水热合成了孪晶CZS,并用超声研磨方法合成CZS-Ni3C.在可见光下进行了产氢测试,实验结果证实了优化的ZCS-1在Na2S·9H2O和Na2SO3的水溶液中光催化析氢活性最高.经过4次连续的循环反应,ZCS-1二元复合体系展现出良好的稳定性.为深入探讨高效产氢机制,对纳米级ZCS复合材料的光催化物化性能及载流子分离机制进行了表征.通过X射线衍射确定了ZCS和ZCS-1的晶体结构.用高分辨电子显微镜和X射线光电子能谱证实合成了ZCS和Ni3C助催化剂的成功复合.用紫外-可见漫反射光谱法对制备的ZCS和ZCS-1复合样品的光吸收特性进行了表征.结果表明,在ZCS上负载Ni3C以后,样品的可见光吸收能力显著提升.利用稳态及瞬态荧光光谱研究了ZCS-1光催化剂的电荷载流子复合和转移行为.进一步对纯ZCS和ZCS-1复合光催化剂的瞬态光电流响应(I-t曲线)进行了研究,确定了光生载体的分离效率.阻抗是深入研究电荷载流子迁移和界面转移的最有力技术,利用阻抗技术证实ZCS-1界面高效的载流子分离性能.极化曲线结果表明,加入Ni3C可以降低ZCS的产氢过电势,因此加速表面产氢动力学.由此可见,本文所构建的ZCS同质结与Ni3C助催化剂的协同作用可以明显促进体相及表面光生电子空穴对的分离,从而显著增强光催化分解水产氢活性.该文所采用基于ZCS纳米孪晶与异质助催化剂耦合策略可以作为一种通用策略扩展到各种传统半导体的改性,从而极大地推进高效光催化产氢材料的持续进步.  相似文献   
8.
铂单原子作为一种新型催化剂,具有活性组分高度分散、配位未饱和以及原子利用率高等特点,在光催化还原CO2方面表现出巨大潜力.但是由于成本高昂和负载量高等因素,极大地限制了其在实际生产中的广泛应用.合成具有低负载量贵金属铂,同时提高铂基单原子催化剂的催化活性仍然是一项巨大挑战.晶化石墨相氮化碳的二维结构,特别是其稳定晶化结构所形成的限域环境及其可扩展的π共轭单元,可以有效锚定金属单原子,因而可作为金属单原子的良好载体.已有的金属单原子载体氮化碳多为弱晶或非晶结构,基于晶化氮化碳的高结晶度和高结构稳定性,合理构建金属单原子沉积的结晶石墨相氮化碳体系仍十分困难.关于晶化氮化碳负载金属单原子催化剂应用于光催化还原CO2的研究至今鲜有报道.本文开发了一种具有低负载量的铂基双单原子锚定晶化氮化碳的制备方法,通过设计氮化碳缺陷位点,在晶化石墨相氮化碳载体表面构筑氮缺陷位点,利用载体的丰富氮缺陷作为陷阱,有效捕获双单原子金属前驱体,成功制备了具有低负载量(铂为0.32wt%)的双金属铜铂单原子催化剂,并用于光催化CO2还原反应中.结果表明,相比于单原子铂催化剂和单原子铜催化剂,该种双单原子铜铂体系在光催化还原CO2-CO中表现了更好催化活性.在光照3.5 h后,铜铂双单原子体系的CO产量达到41.1μmolg-1.除此之外,铜铂双单原子体系在光催化过程中有利于促进CH4生成,在没有任何牺牲剂或共催化剂作用下其CH4的产量为9.8μmolg-1,其产率分别是相同光照条件下单原子铂催化剂(3.2μmolg-1)和单原子铜催化剂(2.0μmol g-1)的三倍和五倍.高分辨透射电镜结果表明,制备的氮化碳呈现了高度晶化的结构.球差扫描透射电子显微镜结果表明,铂和铜物种分别以高度分散的单原子形式存在,且在双金属铜铂单原子体系并未发现铜颗粒和铂颗粒.电化学分析结果表明,通过双配位活性位点的桥梁作用提高光生电子的转移效率,使得铜铂双单原子体系具有更高的电流密度和更好的载流子传输能力.原位X射线光电子能谱结果表明,金属铂和铜单原子成功负载在晶化石墨相氮化碳上,且在光照过程中单原子铂和铜的结合能的电子密度有些许改变,证明了该双金属单原子体系在光催化过程中协同动态光电子的迁移转移;原位红外傅里叶变换光谱实验结果表明,这种稳定的铜铂双单原子体系有利于促进催化还原反应中中间体产物的加氢过程,对终产物的解离和释放有明显的促进作用,从而提高光催化还原CO2反应的活性和选择性.  相似文献   
9.
高结晶氮化碳空心球的制备及其增强光催化产氢活性   总被引:2,自引:0,他引:2  
李阳  张岱南  范佳杰  向全军 《催化学报》2021,42(4):627-636,中插43-中插47
石墨烯型氮化碳(g-C3N4)已经成为解决环境污染和能源危机问题的较为理想的光催化剂,但由于其较低的比表面积和较高的光生载流子重组效率而表现出较弱的光催化活性.因此,研究者们已经提出了许多策略,例如纳米结构设计,杂原子掺杂和增加结晶度,用来克服氮化碳的这些缺点,从而提高其光催化性能.其中,引起了较多关注的是增加g-C3N4的结晶度,因为晶化g-C3N4(CCN)的内层堆积密度高,外层结构缺陷少,可以提供更快的光生载流子迁移效率,从而增加参与光催化反应的光生电子和空穴.即便如此,通过常规方法制备的晶化g-C3N4依然显示出不规则的形貌和较低的比表面积.基于此,本文以氰尿酸-三聚氰胺(CM)超分子自组装混合物作为前驱体,通过熔盐法成功地制备了高结晶度的g-C3N4空心球(CCNHS).采用XRD、FTIR、13C固相CP-MAS NMR、XPS和时间分辨PL谱对CCNHS样品的基本性质进行了表征,并通过SEM、HRTEM、氮吸附-脱附和紫外-可见DRS光谱对CCNHS样品的形貌结构进行了表征.结果表明,CCNHS样品呈现出由纳米棒组成的非常规则的空心球结构,因而表现出比传统CCN样品更大的比表面积以及更强的光利用效率.CCNHS样品XRD谱出现晶化氮化碳的特征峰;其HRTEM照片出现了对应晶化氮化碳的0.33 nm晶格条纹;FFT衍射斑点的出现以及光吸收能力的增强进一步证明了CCNHS样品结晶度的提高.XPS谱元素分析以及EPR谱结果表明,CCNHS样品中还存在有利于提高光生电子转移的氮空位.光电流、阻抗谱以及与三嗪晶化氮化碳的对比结果证明,CCNHS样品中存在内在电场.同时,采用具有一定毒性的双酚A增塑剂替代了从粮食中提取出来的传统醇类牺牲剂,既保证了对有毒污染物的降解,也减少了粮食的浪费.即使以难降解的双酚A作为牺牲剂,CCNHS样品在降解双酚A(降解率为21%)的同时,依然表现出较好的光催化产氢活性(151.2μmol·h?1·g?1).本文为超分子自组装的结构优化以及晶化氮化碳的改善提供了新视角.  相似文献   
10.
Mn Cl2、Li OH、EDTA和Na Cl O混合溶液一步水热反应合成锂离子电池正极材料正交LiMnO2(o-LiMnO2),进一步在反应体系中添加碳纳米管(CNTs)制备碳纳米管改性的o-LiMnO2(o-LiMnO2/CNTs复合材料)。采用X-射线衍射和扫描/透射电镜表征产物的晶体结构、微观形貌,循环伏安法和恒流充放电测试得活性材料电化学性能。结果表明,体系中nLi∶nMn控制为8∶1,在180℃反应24 h得到目标产物;反应体系中添加CNTs形成复合材料可降低o-LiMnO2颗粒粒径、提高导电率。o-LiMnO2首次放电容量为76.0 m Ah·g-1,100周后容量保持为124.1 m Ah·g-1;o-LiMnO2/CNTs复合材料首次及100周放电容量(基于o-LiMnO2/CNTs的质量)分别高达94.1和159.8 m Ah·g-1。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号