首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10295篇
  免费   874篇
  国内免费   7777篇
化学   15937篇
晶体学   104篇
力学   262篇
综合类   361篇
数学   215篇
物理学   2067篇
  2024年   88篇
  2023年   403篇
  2022年   416篇
  2021年   443篇
  2020年   360篇
  2019年   446篇
  2018年   300篇
  2017年   347篇
  2016年   472篇
  2015年   435篇
  2014年   774篇
  2013年   664篇
  2012年   626篇
  2011年   640篇
  2010年   619篇
  2009年   753篇
  2008年   784篇
  2007年   792篇
  2006年   749篇
  2005年   728篇
  2004年   783篇
  2003年   785篇
  2002年   708篇
  2001年   825篇
  2000年   561篇
  1999年   491篇
  1998年   475篇
  1997年   513篇
  1996年   494篇
  1995年   466篇
  1994年   403篇
  1993年   371篇
  1992年   286篇
  1991年   292篇
  1990年   238篇
  1989年   225篇
  1988年   45篇
  1987年   34篇
  1986年   29篇
  1985年   29篇
  1984年   24篇
  1983年   19篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
陈彪  朱玥玮  李婷婷  陈羽  王燕  李功  吴又进 《化学通报》2023,86(9):1146-1151
卡罗琳·露丝·贝尔托西因开创了生物正交化学而获得2022年诺贝尔化学奖,该反应使科学家能够在不破坏细胞正常化学功能的情况下探索细胞、跟踪生物过程并实现了多种应用,提高了人类探索生命运动的能力和医学药物治疗的发展水平。通过回顾贝尔托西的研究背景以及相关的科研历程,提出了重视自主研究能力,在实践探索中收获无限可能;关注跨学科知识生产,在交叉领域开拓学科前沿;发挥科研“她”力量,更加多元与开放包容的思考与启示。  相似文献   
72.
《高分子通报》2021,(6):15-25
介绍了Ziegler-Natta催化剂功能化的几种策略,以及其应用于聚烯烃高性能化的研究进展。Ziegler-Natta催化剂/先进聚合助剂复合策略可有效扩展Ziegler-Natta催化剂性能,其中Ziegler-Natta/ω-烯烃甲基二氯硅烷功能催化剂体系在制备长链支化/高熔体强度聚丙烯方面已显示出工业潜力,而Ziegler-Natta/非共轭α,ω-双烯烃体系为丙烯多相共聚提供了革命性的技术,使丙烯多相共聚不但可生产高抗冲聚丙烯(低橡胶含量),也可生产聚丙烯基热塑性弹性体(高橡胶含量)。Ziegler-Natta/茂(非茂)复合催化剂和纳米负载Ziegler-Natta催化剂可进一步丰富Ziegler-Natta催化剂性能,制备新型高性能聚烯烃材料。  相似文献   
73.
《高分子通报》2021,(6):131-136
采用非茂PNP型稀土钇催化剂1催化丁二烯和异戊二烯无规共聚合,制备出了异戊二烯摩尔含量为11%~53%,高顺式-1,4-立构规整的丁戊橡胶。通过~1H NMR、~(13)C NMR和GPC对所得共聚合的微观结构、立构规整性以及分子量及其分布进行了表征分析。采用密炼、开炼两步法将该系列丁戊橡胶与炭黑、各种助剂进行混炼和硫化成型。通过拉伸、阿克隆磨耗和动态热机械分析等实验,研究了异戊二烯含量、分子量大小等因素对丁戊橡胶硫化胶拉伸强度、撕裂强度、磨耗性能及其玻璃化转变温度和结晶性能的影响规律。  相似文献   
74.
《高分子通报》2021,(6):137-143
设计并合成了两种苊环带有羟基、苯胺上带有不同取代基的α-二亚胺Ni(Ⅱ)催化剂Cat-F和Cat-OCH_3,研究了两种催化剂在一铝二乙基铝的作用下催化乙烯均聚的催化性能。研究表明,温度和压力对催化剂活性的影响较大。此外,采用差示扫描量热仪(DSC)、碳谱核磁(~(13)C-NMR)、凝胶渗透色谱(GPC)等仪器对聚合产物进行了测试,分析了聚合条件对聚乙烯的熔点、支化度、平均分子量及其分布的影响。  相似文献   
75.
水作为人类重要的生产要素,参与了卷烟生产的多个环节。水在自然条件下以分子簇的形式存在,多种处理方式可以改变水分子团簇的大小。本文以17O-核磁共振法为水分子团簇的表征手段,以自来水为水源,考察了氢气、远红外辐射陶瓷球、反渗透、磁场四种处理方法对水分子簇的影响。结果表明:四种处理方式均能使一定量水分子由氢键结合态变为自由态,从而使水分子簇变小。不同处理方法对液态水缔合结构的影响大小排序为氢气处理>远红外陶瓷球处理>反渗透处理>磁场处理。同时,对氢气处理效果的时效性进行了考察,随着放置时间增加,部分自由态水分子再次转变为氢键结合态,水分子簇尺寸变大,但三天后仍保留了一定处理效果。本研究表明氢气处理为四种处理方式中最优的水处理方式,具有提升烟草行业生产用水品质的潜在应用价值。  相似文献   
76.
易莹  樊敏  李权 《化学教育》2021,42(21):1-6
铂是一种化学性质极其稳定的贵金属,铂、铂合金以及铂配合物在催化剂、医药、传感器等领域具有重要应用。简要介绍铂的发现史、自然分布与资源现状、铂的应用等3个方面,其中铂的应用,重点从铂基催化剂、铂合金纳米材料、发光铂配合物、铂类抗癌药物等4个方面展开介绍。  相似文献   
77.
铱(Ⅲ)配合物差的水溶性限制了其在电致化学发光(ECL)领域的应用。该文用聚(苯乙烯-马来酸酐)(PSMA)羧基功能化三(2.苯基吡啶)铱(Ⅲ)(Ir(ppy)3)合成水溶性铱纳米棒(Ir NDs)。在共反应试剂三丙胺(TPrA)存在下,Ir NDs 表现出优良的ECL性能。借助多巴胺(DA)对Ir NDs-TPrA体系ECL的高效猝灭作用,实现了对DA的高灵敏检测,线性范围为2.0×10-8~4.0×10-4 mol/L,检出限为6.3×10-9 mol/L。羧基功能化的Ir NDs为铱(Ⅲ)配合物在ECL领域的应用提供了理想平台,也为DA的检测提供了新方法。  相似文献   
78.
该研究基于暴露生物标记物溯源思路,应用于解决芥子气(SM)临床早期诊断、溯源确证难题。建立了芥子气中毒患者尿液中7种游离代谢产物的两步固相萃取/超高效液相色谱-串联质谱(SPE/UPLC-MS/MS)同时定量方法,检出限为5 pg/mL~1 ng/mL,定量下限为10pg/mL~5 ng/mL;结合前期建立的4种游离碱基加合物的同位素稀释-UPLC-MS/MS定量方法,对1例疑似芥子气中毒人员尿液中可能赋存的生物标记物进行了全筛查分析。尿液中共检出3类10种生物标记物,包括首次报道的游离代谢产物芥子亚砜,可确证患者为芥子气中毒;除硫二甘醇外,标记物含量均在暴露后3~4 d达到峰值,随后降低,至7 d仍可检出,其中谷胱甘肽加合物的β裂解产物含量相对较高,可作为芥子气中毒早期诊断与疗效评估的重要指标。  相似文献   
79.
建立了一种非衍生化高效液相色谱-串联质谱快速检测生物体液中草甘膦、草铵膦及其代谢物等8种极性农药的方法。8种极性农药经Metrosep A Supp 5阴离子色谱柱(150 mm×4.0 mm,5μm)分离,以纯水-200 mmol/L碳酸氢铵溶液(含0.1%氨水)为流动相进行梯度洗脱,负离子多反应监测(MRM)模式进行检测。实验结果表明,8种极性农药在0.5~50 ng/mL范围内线性关系良好(r2>0.99),检出限(S/N≥3)为0.08~0.3 ng/mL,定量下限(S/N≥10)为0.3~1 ng/mL。方法的基质效应为86.5%~106%,目标化合物的回收率为81.5%~114%,日内相对标准偏差(RSD)为0.30%~2.8%,日间RSD为0.50%~5.3%。该方法无需复杂的衍生化过程,简便快速、灵敏度高、稳定性好,适用于生物体液中8种极性农药的检测。  相似文献   
80.
杨爽  杨贤鹏  王宝俊  王蕾 《化学进展》2021,33(12):2309-2315
纸基生物传感器由于其具有成本低、操作方便、生物可降解、识别元件用量低等优点,近年来受到了广泛的关注。其中,以功能核酸作为识别元件的纸基荧光生物传感器具有较高的灵敏度、瞬时响应以及实时检测等特性,在便携式传感设备方面展现出巨大的潜力。此外,将核酸作为识别元件的纸基无细胞蛋白合成平台,通过条件合成的报告荧光蛋白可实现对病毒、重金属等目标物的特异性检测,具有良好的应用前景。首先,本文介绍了基于核酸的纸基荧光生物传感器的设计,特别是基于核酸的识别元件与纸基材料的结合方式。其次,总结了基于核酸的纸基荧光生物传感器在临床诊断、食品安全检测、环境污染物检测等不同领域的最新研究进展,讨论了其优势与局限性。最后,探讨了基于核酸的纸基荧光生物传感器的发展方向与应用前景,以期为相关领域的研究提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号