首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于MgCl_2负载Ziegler-Natta催化剂的丙烯多相共聚(丙烯均聚或与少量乙烯无规共聚和乙烯丙烯无规共聚制备乙丙橡胶的串联聚合)是工业丙烯聚合的主要方法之一,聚合物粒子形态控制是丙烯多相共聚的关键.尤其是对于制备高EPR含量的TPO,如何控制高EPR含量时的产物粒子形态,将EPR限制于粒子内部而不向表面溢出,是丙烯多相共聚需要解决的关键科学问题.本文报道以非共轭α,ω-双烯烃在乙丙无规共聚中使EPR发生同步交联是解决此问题的有效手段.同步交联使EPR的黏弹性发生突变,黏度和弹性迅速增大,抑制了纳米尺度胶粒在分散的催化剂初级粒子表面形成后的迁移及聚集,一方面使EPR在多相共聚物粒子内部分散均匀,另一方面避免了EPR的溢出而使共聚物粒子形态得到保持.本研究为丙烯多相共聚制备高EPR含量聚丙烯热塑性弹性体提供了一种参考方法.  相似文献   

2.
基于Ziegler-Natta催化剂进行丙烯多相共聚是制备聚丙烯多相共聚物的主要方法之一,由于线性乙丙橡胶(EPR)极易发生流动会影响聚合物的颗粒形态和橡胶相的相形态,因此,本文通过在聚合中引入氯硅烷功能化非共轭α,ω-双烯烃,使其参与乙丙无规共聚并使EPR发生同步交联,以解决上述问题.结果显示,氯硅烷功能化非共轭α,ω-双烯烃引入后EPR分子链之间形成交联结构,有效抑制了EPR液滴的流动和聚集,使聚合物具有良好的颗粒形态,EPR相以较小的相畴尺寸均匀地分散在PP基体中,而且硅氯基团遇水发生缩合反应可进一步提高支化/交联效率,进一步稳定聚合物的相形态,聚合物的力学性能得到较大的提升.  相似文献   

3.
通过在反应器间加入不同的外给电子体,控制Ziegler-Natta催化剂催化丙烯聚合反应,并对聚丙烯立构规整度分布、超高分子量聚丙烯组分以及共聚单体分布情况进行了研究,结果表明,应用此方法可获得立构规整性分布受控、超高分子量组分含量高以及橡胶相增韧效果好的聚丙烯树脂.  相似文献   

4.
利用具有"颗粒反应器技术(RGT)"特征的Ziegler-Natta催化剂进行丙烯多相共聚(丙烯均聚+乙烯/丙烯无规共聚),通过在乙丙共聚阶段引入双烯烃单体1,9-癸二烯,使乙丙共聚物在聚合的同时实现交联,制备了新型抗冲聚丙烯合金.聚合反应结果表明,1,9-癸二烯可参与乙丙共聚,同时对聚合反应速率和共聚物组成影响较小;1,9-癸二烯使乙丙共聚物发生支化/部分交联,合金聚合物的熔体流动速率在引入1,9-癸二烯后显著降低,且凝胶含量随1,9-癸二烯用量的增加而增大.形态研究结果表明,乙丙共聚物的交联显著降低了其在聚丙烯基体中的分散尺度,提高了分散均匀性,分散相粒径随支化/交联程度提高而减小.力学性能测试结果表明,乙丙共聚物的交联使合金聚合物在保持较高韧性的同时显著提升了刚性,有利于实现抗冲聚丙烯合金的刚韧平衡.  相似文献   

5.
基于Ziegler-Natta催化剂的氯硅烷功能化非共轭α,ω-双烯烃与丙烯共聚,在水的引发下脱水缩合可有效地形成长支链结构的聚丙烯树脂.而氢气常作为丙烯聚合中的链转移剂,调控聚丙烯的分子量,基于此,研究了氢气对氯硅烷功能化非共轭α,ω-双烯烃与丙烯共聚物链结构的影响.核磁共振氢谱(~1H-NMR)测试结果表明,氢气抑制了氯硅烷功能化非共轭α,ω-双烯烃的插入,随着氢气用量的增加,共聚物分子链中端基乙烯基含量由0.12 mol%降低到0.05 mol%.熔体流变行为测试结果显示,聚合物熔体的储能模量、损耗模量和零剪切黏度均随着氢气用量增加而降低,这主要是由于相对分子质量减小和长支链密度的减少.  相似文献   

6.
通过乙丙共聚物的原位交联,可以降低其分子链运动性,从而在丙烯多相共聚过程中,实现对合金相形貌的控制.但在Ziegler-Natta催化剂体系中,长碳链的非共轭α,ω-双烯烃在促进交联的同时,伴随着悬垂双键结构的形成,其对原位交联效果的影响尚不清楚.本文选用9,9-二(甲氧基甲基)芴为内给电子体的MgCl_2/TiCl_4催化剂,1,9-癸二烯为交联剂,合成了系列乙丙共聚物,通过对链结构和流动性的分析发现,交联结构的形成明显滞后于悬垂双键,且乙丙共聚物流动性随1,9-癸二烯浓度增加呈现不规则的U型变化:当1,9-癸二烯浓度小于0.22 mol/L时,乙丙共聚物流动性增强;当浓度高于0.22 mol/L时,流动性受限.本研究对以非共轭α,ω-双烯烃控制丙烯多相共聚反应和新型聚丙烯反应器合金的合成有一定指导作用.  相似文献   

7.
聚烯烃材料如聚乙烯、聚丙烯、聚异丁烯、乙丙橡胶或丁基橡胶等,在国民经济和日常生活中发挥着重要作用.通过可控聚合反应可以实现制备高性能烯烃聚合物材料及不同微观结构、序列结构及拓扑结构的烯烃基高分子材料.本文综述了近年来通过乙烯/丙烯配位共聚制备乙丙共聚物及通过异丁烯正离子聚合制备聚异丁烯和丁基橡胶领域的研究进展,总结了在齐格勒-纳塔催化剂、茂金属催化剂及非茂单活性中心钒催化剂催化乙烯/丙烯共聚方面的进展,论述了异丁烯单体可控/活性正离子聚合新引发体系、可控/活性聚合反应调控、聚合新方法与新工艺,归纳了基于烯烃可控聚合的大分子工程.  相似文献   

8.
基于具有"反应器颗粒技术(RGT)"特征的Ziegler-Natta/茂金属复合催化剂(MgCl2/TiCl4/racEt(Ind)2ZrCl2),以三乙基铝(AlEt3,TEA)和烷基铝氧烷(MAO)分别作为Ti和Zr 2种催化剂组分的助催化剂,利用TEA对茂金属Zr中心在丙烯均聚反应中的阻聚作用,以及乙烯对"失活"中心的活性复原,实现了复合催化剂中茂金属Zr中心在聚丙烯催化合金(丙烯均聚+乙烯/丙烯共聚)过程中的"可逆失活".基于这种方法,以MgCl2/TiCl4/rac-Et(Ind)2ZrCl2为催化剂,TEA/MAO为助催化剂,通过一步法(催化剂和助催化剂一次加入)制备了新型聚丙烯催化合金,聚丙烯基体(PP)选择性地由Ti金属中心生成,而乙丙共聚物(EPR)则有相当大的比例由茂金属Zr中心生成.与完全由Ziegler-Natta催化剂所产生的聚丙烯催化合金相比,新型合金中的EPR共聚序列结构更加无规,同时EPR保持在PP基体中均匀分散.  相似文献   

9.
作为Ziegler-Natta催化剂的重要组成部分,载体对催化剂的性能调控和聚合物形态控制以及结构与性能等都有重要影响,载体技术的发展对Ziegler-Natta催化剂的技术进步以及聚烯烃的高性能化起到有力的推动作用。本文对近年来Ziegler-Natta催化剂载体技术的进展进行了总结,包括醇镁载体体系、MgCl2/无机盐掺杂复合载体体系、MgCl2杂化复合载体体系和纳米粒子负载体系等,并对本课题组在此领域的相关工作亦进行了简要介绍。  相似文献   

10.
高结晶聚丙烯一般采用高等规度聚丙烯加入成核剂制备。本文较全面地综述了制备高结晶度聚丙烯的催化剂体系及其制备技术。高等规度聚丙烯可以通过传统Ziegler-Natta聚丙烯催化剂与合适的外给电子体搭配制备,也可以通过选取具有合适结构的茂金属化合物制备。目前,聚丙烯工艺主要使用传统Ziegler-Natta催化剂。本文介绍了生产高结晶度聚丙烯的主要生产厂家、牌号和生产工艺,如Spheripol环管/气相工艺、Unipol气相工艺、Novolen气相工艺I、nnovene气相工艺、Hypol釜式本体工艺等,展望了高结晶度聚丙烯的应用前景,认为高结晶聚丙烯是PP新产品开发及高性能化的重要途径之一,具有非常广阔的市场前景,对于我国高结晶度聚丙烯牌号的开发具有较大的意义。  相似文献   

11.
非均相TiCl_4/MgCl_2型Ziegler-Natta催化剂(负载型Ziegler-Natta催化剂)因其高聚合活性、高立构选择性及低制备成本,是目前聚烯烃领域重要的工业催化剂.本文综述了负载型Ziegler-Natta催化剂催化α-烯烃(乙烯、丙烯)和共轭二烯烃(丁二烯、异戊二烯)配位聚合机理的研究进展,包括TiCl_4在MgCl_2表面的吸附、钛的烷基化与还原、烷基铝的作用、活性中心数目、活性中心价态、活性中心模型、可能活性中心结构及催化机理、给电子体作用等.最后,展望了负载型Ziegler-Natta催化剂催化烯烃聚合的机遇与挑战.  相似文献   

12.
烯烃配位聚合催化剂的研究进展   总被引:1,自引:0,他引:1  
较全面地综述了配位聚合催化剂和聚合机理的研究进展:高效Ziegler-Natta催化剂催化丙烯、乙烯等烯烃高效聚合,可合成多种高性能聚烯烃,等规聚丙烯的等规度大于98.5%,不同结构和性能的聚乙烯包括线性低密度聚乙烯(LLDPE)、超低密度聚乙烯(VLDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)、双/宽峰分布聚乙烯、超高分子量聚乙烯(UHMWPE)和超低密度双/宽峰分布聚乙烯等;茂金属催化剂催化苯乙烯、乙烯、丙烯、1-丁烯等烯烃的均聚合和共聚合,并概括了其聚合机理;非茂金属催化剂合成多组分、多立体结构嵌段的聚烯烃,极性聚烯烃及超支化聚烯烃等,介绍了链行走和链穿梭机理。展望了配位聚合的发展趋势,认为聚合过程的环境友好、产品使用过程的环境友好、聚烯烃的高性能化和功能化是从事配位聚合工作的全体人员努力的方向。  相似文献   

13.
以N-(3-氯苯)-二(三氟甲基磺酰基)亚胺为内给电子体的聚丙烯催化剂具有较好的氢调敏感性,随着加氢量的增加,聚丙烯的熔融指数较大幅度地增加。丙烯共聚实验表明,该催化剂还具有较好的丙烯共聚性能。用升温梯度淋洗分级(TREF)的方法对样品进行分级处理的结果表明,所生成的共聚聚丙烯样品与对比样品SP179(市场上的共聚聚丙烯牌号)具有十分相似的TREF分级图。宏观力学性能测试表明,所得共聚聚丙烯非常符合工业上作为汽车保险杠专用树脂的使用要求。  相似文献   

14.
外给电子体对聚丙烯性能的影响   总被引:4,自引:0,他引:4  
综述了用Ziegler-Natta催化剂制备聚丙烯时加入的外给电子体对聚丙烯等规度、分子量分布和熔融指数的影响,并深入讨论了不同外给电子体组合对聚丙烯性能的影响。采用合适的外给电子体组合可以制备出高熔融指数、宽分子量分布的高性能聚丙烯。  相似文献   

15.
聚烯烃合金以其优异的综合性能,得到了日益广泛的关注和研究。本文从聚合催化剂体系和聚合工艺技术角度出发,系统地综述了聚烯烃催化剂体系的发展历程及聚烯烃合金的制备工艺技术。特别介绍了基于反应器颗粒技术的聚合工艺特点,重点关注了Spheripol工艺、Catalloy工艺、Spherizone工艺等工艺技术。以第四代Ziegler-Natta催化剂为基础的反应器颗粒技术和以复合催化剂为基础的多催化剂反应器颗粒技术是聚烯烃新材料未来的发展方向。  相似文献   

16.
作为最重要的热塑性高分子材料之一,聚丙烯在材料力学性能上的缺陷主要表现为冲击韧性尤其是低温韧性差,在熔体加工中的缺陷主要表现为熔体强度低,如何综合改善这两方面的性能是丙烯聚合和聚丙烯结构设计研究的重要问题.本文利用α-烯烃基甲基二氯硅烷调控丙烯多相共聚,在聚合反应完成后通过对聚合物进行水解处理,在共聚物中产生长链支化结构,制备了同时具有高熔体强度和高冲击韧性的新型聚丙烯.共聚物的凝胶渗透色谱(GPC)和熔体流变学测试结果均表明长链支化结构的存在,而试样断面扫描电镜(SEM)则清楚给出其以聚丙烯为基体和以乙丙无规共聚物橡胶(EPR)为分散相的相分离形态.共聚物在拉伸流变测试中表现出高熔体强度和显著的应变强化效应,在力学性能测试中显现出高缺口冲击强度.  相似文献   

17.
研究了不同助催化剂和不同聚合温度对催化剂TiCl4/MgCl2/9,9-双(甲氧基甲基)芴(BMMF)丙烯聚合性能的影响.研究结果发现该催化剂在高温(100℃)聚合时,采用还原能力和络合能力较弱的烷基铝(Hex3Al)为助催化剂可以得到高的立构选择性(97%)和高活性.100℃聚合时不同的助催化剂对催化剂得到的聚丙烯结构有重要影响.助催化剂为Me3Al聚合得到的中等等规聚丙烯含量比其他烷基铝高.助催化剂为Et3Al聚合得到聚丙烯链结构中含有少量乙烯共聚单元;而助催化剂为Me3Al,iBu3Al和Hex3Al聚合得到聚丙烯链结构中没有发现共聚单元.  相似文献   

18.
丙烯聚合催化剂的研究进展   总被引:1,自引:0,他引:1  
王剑峰  王立 《分子催化》2004,18(3):234-240
自从上个世纪五十年代发现Ziegler-Natta催化剂以来,对丙烯定向聚合的研究一直没有中断过.五十年来,聚丙烯催化剂从低活性、低规整性的第一代TiCl3催化剂已经发展到了第四代超高活性和高定向性的球形大颗粒催化剂,近年来又发现茂金属是有效的丙烯聚合催化剂.茂金属有清晰的组成和立体结构,这为研究结构和性能的关系带来了方便,因而在学术界和企业界引起了新一轮对聚丙烯合成研究的兴趣.本文对负载型经典Ziegler-Natta催化体系和茂金属催化体系催化丙烯聚合的研究进展作一个综述.  相似文献   

19.
聚烯烃合金以其优异的综合性能,得到了日益广泛的关注和研究。本文从聚合催化剂体系和聚合工艺技术角度出发,系统地综述了聚烯烃催化剂体系的发展历程及聚烯烃合金的制备工艺技术。特别介绍了基于反应器颗粒技术的聚合工艺特点,重点关注了Spheripol工艺、Catalloy工艺、Spherizone工艺等工艺技术。以第四代Ziegler-Natta催化剂为基础的反应器颗粒技术和以复合催化剂为基础的多催化剂反应器颗粒技术是聚烯烃新材料未来的发展方向。  相似文献   

20.
在大品种聚烯烃材料中,高附加值聚烯烃通常由乙烯与α-烯烃共聚制备。ⅣB金属配合物能够为烯烃聚合和共聚提供许多催化剂模型;不仅如此,在烯烃聚合机理研究中还可以帮助理解反应中间体和活性物种。针对聚烯烃产业的实用催化剂体系,催化剂不仅满足高的催化活性,而且能够满足升温操作的稳定性。企业的利润需要高附加值聚烯烃,要求催化剂体系能够通过条件变化制得不同性能的聚烯烃材料,而且可以实现乙烯与α-烯烃的共聚。这些对配合物催化剂的需求,在ⅣB金属配合物催化剂中获得了良好地体现;能够在烯烃聚合中获得分子量从低到高的聚合物,也可以进行乙烯与(甚至含有官能团的)α-烯烃共聚制备功能聚烯烃。按照取代基团的分类,本文综述了近年来ⅣB金属配合物催化烯烃聚合与共聚研究的新进展,特别是重点讨论了具有良好热稳定性的配合物催化剂结构变化对于催化活性和聚合性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号