首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
水分子团簇结构的改变及其生物效应   总被引:14,自引:0,他引:14  
概述了近30年来从水分子团簇结构的发现到水分子簇的稳定结构及相关理论计算的研究进展;总结了改变水分子团簇结构的四种方法.包括外加磁场、外加电场、激光辐射以及直接加热法.分别讨论了这四种方法的作用机理;最后简要介绍了改变水分子团簇结构所诱发的生物效应,并对该领域的研究前景作了展望。  相似文献   

2.
白酒新酒老熟的过程,可以理解为白酒中乙醇分子和水分子之间相互作用的过程,老熟使得乙醇分子与水分子的缔合形态发生了变化,从而引起白酒"口感"的变化。乙醇分子与水分子的缔合形态可以通过其形成的聚合团簇进行理解,而形成的团簇形式往往由氢键相互作用所决定。乙醇分子与水分子能够形成的团簇类型众多,本文着眼于乙醇分子与水分子之间形成的四聚缔合团簇,使用理论计算的方法,对团簇的结构和稳定性、氢键相互作用、红外光谱和振动分析等进行了深入的研究,以期对白酒中两类分子之间的存在形态有更好的理解。  相似文献   

3.
脂肪族氨基酸二肽与水团簇的理论研究   总被引:1,自引:0,他引:1  
用ABEEMσπ/MM模型和MP2/6-31+G(d)//B3LYP/6-31G(d)方法研究水合效应对脂肪族氨基酸二肽的影响.从结构和能量两方面说明Leu残基在蛋白质中起成旋作用,Val和Ⅱe残基在蛋白质中起解旋作用.同时得出:水分子严重影响了二肽分子的骨架二面角;对于结合相同数目水分子的团簇倾向于形成含有环状氢键的结构,并且含有环状氢键团簇的结合能大于含有链状氢键团簇的结合能.  相似文献   

4.
钱萍  杨忠志 《中国科学B辑》2006,36(4):284-298
应用ABEEM/MM模型计算了中等大小水分子团簇(H2O)n(n=7~10)的各种性质, 如: 优化的几何构型、氢键个数、结合能、稳定性、ABEEM电荷分布、偶极矩、结构参数的描述等, 并描述了六聚水区域中所反映的从二维结构(从二聚水到五聚水)到三维结构(n>6的水分子团簇)的过渡.  相似文献   

5.
用CuCl2溶液密度和粘度的变化表征溶液团簇结构的变化,发现CuCl2溶液经冷冻处理后,由于在水的微观结构上形成许多靠氢键结合的小水分子团簇结构,水分子氢键网络的缔合程度变大,溶液密度降低,粘度增大。采用激光显微共聚焦拉曼光谱法对冷冻前后CuCl2溶液与BSA相互作用进行研究,结果表明:Cu2+与BSA作用后,BSA酰胺I带特征峰发生位移,β-折叠构象增加,二硫键构象和酪氨酸外环境发生变化。CuCl2溶液经冷冻-解冻处理后,引起BSA酰胺I带特征峰发生位移的程度和对酪氨酸残基的影响变小,这种相互作用趋弱的效应与水分子团簇结构的变化有关。  相似文献   

6.
采用密度泛函理论B3LYP方法, 在B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(d,p)基组水平上对乙醇-水分子团簇(C2H5OH(H2O)n (n=1-9))的各种性质进行研究, 如: 优化的几何构型、结构参数、氢键、结合能、平均氢键强度、自然键轨道(NBO)电荷分布、团簇的生长规律等. 结果表明, 从二维(2-D)环状结构到三维(3-D)笼状结构的过渡出现在n=5的乙醇-水分子团簇中. 此外, 利用团簇结合能的二阶差分、形成能、能隙等性质, 发现在n=6时乙醇-水分子团簇的最低能量结构稳定性较好, 可能为幻数结构. 最后, 为了进一步探讨氢键本质, 将C2H5OH(H2O)n (n=2-9)最低能量结构的各种性质与纯水分子团簇(H2O)n (n=3-10)比较, 结果表明前者与后者中的水分子之间氢键相似.  相似文献   

7.
随机产生单笼形水分子簇(H2O)n(n=8~36),经分类统计后发现,在笼形水分子簇中,其1221,1212,2121和2112四类氢键的个数与水分子和氢键总数之间有定量关系,且1212类氢键的个数与2121类的氢键始终相等.如果笼形水分子簇中某一类氢键数已知,则它的其余三类氢键的个数也随即确定.  相似文献   

8.
采用密度泛函理论B3LYP方法,在B3LYP/6-31G(d)理论水平上,构建高岭石的层间团簇模型Si6Al6O42H42(层间距为0.844 0和1.000 0nm),并对高岭石层间及其与n(n=1~3)个水分子相互作用的团簇的各种性质进行研究,如优化的几何构型、电子密度、氢键、能量、NBO电荷分布、振动频率等.结果表明,随着水分子个数n(n=1~3)的增加,体系的能量逐渐降低.水分子通过多种类型的氢键插层于高岭石层间,其中水分子间的氢键强度最强,其次是水分子与铝氧层之间形成的氢键,再次是水分子与硅氧层之间的氢键;层间距随着插层分子的增多而增大,但高岭石层间的活性位点依然存在,且位置较插层前没有明显变化.  相似文献   

9.
应用ABEEM/MM模型研究水分子团簇(H2O)n (n=11~16)的性质   总被引:3,自引:0,他引:3  
应用ABEEM/MM 模型计算了较大的水分子团簇(H2O)n (n=11~16)的各种性质,如:优化的几何构型, 氢键个数, 结合能, 稳定性, ABEEM 电荷分布, 偶极矩, 以及结构参数、平均氢键个数和强度, 增加的团簇结合能等.结果表明,从立方体结构到笼状结构的过渡出现在n=12的水分子团簇中,随着类似于笼状结构特点的不断增强,五元环的富集程度有所增加.  相似文献   

10.
赵飞耀  刘翠  宫利东  杨忠志 《化学学报》2011,69(10):1141-1150
运用量子化学和ABEEM/MM浮动电荷分子力场, 构建描述铵离子-水体系相互作用的精密势能函数, 对 - (H2O)n (n=1~9)簇合物的结构和稳定性等性质进行了研究. 对团簇的结合能和电荷布居分析发现, 当n≤4时, 随着水分子数目的增加, 与水分子间尽可能多地形成线型氢键, 直至水分子在 周围形成完整的第一水合层|当n≥5时, 簇合物以 为中心, 通过氢键网络形成的环状和笼状结构为最稳定. 与第一水合层水分子的相互作用强于水分子之间的相互作用. 结果表明, ABEEM/MM方法的结果与量子化学方法得到的结果有很好的一致性.  相似文献   

11.
Molecular dynamics simulations have been carried out for liquid water at 7 different temperatures to understand the nature of hydrogen bonding at molecular level through the investigation of the effects of temperature on the geometry of water molecules. The changes in bond length and bond angle of water molecules from gaseous state to liquid state have been observed, and the change in the bond angle of water molecules in liquid against temperature has been revealed, which has not been seen in literature so far. The analysis of the radial distribution functions and the coordinate numbers shows that, on an average, each water molecule in liquid acts as both receptor and donor, and forms at least two hydrogen bonds with its neigbors. The analysis of the results also indicates that the water molecules form clusters in liquid.  相似文献   

12.
Molecular dynamics NVE simulations have been performed for five thermodynamic states of water including ambient, sub-and supercritical conditions. Clustering of molecules via hydrogen bonding interaction has been studied with respect to the increasing temperature and decreasing density to examine the relationship between the extent of hydrogen bonding and macroscopic properties. Calculations confirmed decrease of the average number of H-bonds per molecule and of cluster-size with increasing temperature and decreasing density. In the sub-and supercritical region studied, linear correlations between several physical quantities (density, viscosity, static dielectric constant) and the total engagement of molecules in clusters of size k > 4, P k>4, have been found. In that region there was a linear relationship between P k>4 and the average number of H-bonds per water molecule. The structural heterogeneity resulting from hydrogen bonding interactions in low-density supercritical water has been also discussed.   相似文献   

13.
Atomistic, molecular dynamics simulations of water diffusion in a hydrated, amorphous polyamide have been carried out to study the effects of polymer dynamics, cross-linking, and hydrogen bonding interactions on the molecular mechanisms of diffusion. This polymer was selected as a model for the discriminating layer of FT-30 reverse osmosis membranes, used commercially for water desalination. Analysis of the configurations generated during the simulations shows that, at the relatively high water content studied, a continuous water phase is formed which permeates the polymer and consists of more than 90% of all waters of hydration. Water diffusion takes place by distinct “jump-like” movements between weakly localized sites in this continuous phase. The jump length is on average ∼3Å, independent of the system studied, and is most likely defined by the local, cooperative rearrangement of water molecules. However, the jump frequency, or equivalently, the rate of water diffusion varies from system to system, and depends on polymer dynamics and cross-linking density, and more significantly, on water–water hydrogen bonding interactions.  相似文献   

14.
Temperature and size effects on the behavior of nanoscale water molecule clusters are investigated by molecular dynamics simulations. The flexible three-centered (F3C) water potential is used to model the inter- and intramolecular interactions of the water molecule. The differences between the structural properties for the surface region and those for the interior region of the cluster are also investigated. It is found that as the temperature rises, the average number of hydrogen bonds per water molecule decreases, but the ratio of surface water molecules increases. After comparing the water densities in interior regions and the average number of hydrogen bonds in those regions, we find there is no apparent size effect on water molecules in the interior region, whereas the size of the water cluster has a significant influence on the behavior of water molecules at the surface region.  相似文献   

15.
A new Hirshfeld partitioning of cluster polarizability into intrinsic polarizabilities and charge delocalization contributions is presented. For water clusters, density-functional theory calculations demonstrate that the total polarizability of a water molecule in a cluster depends upon the number and type of hydrogen bonds the molecule makes with its neighbors. The intrinsic contribution to the molecular polarizability is transferable between water molecules displaying the same H-bond scheme in clusters of different sizes, and geometries, while the charge delocalization contribution also depends on the cluster size. These results could be used to improve the existing force fields.  相似文献   

16.
A strategy for encouraging the formation of extended water arrays is presented, in which molecules that contain a 1,4-dihydroquinoxaline-2,3-dione core are used as supramolecular hosts for the accommodation of guest water molecules and arrays. These molecules were selected as they contain a hydrophilic oxalamide-based "terminus" that allows water molecules to hydrogen-bond to the host organic molecules as well as to each other. The host molecules also contain a hydrophobic "end" based upon an aromatic ring, which serves to encourage the formation of discrete water clusters in preference to three-dimensional networks, as the water molecules cannot form strong hydrogen bonds with this part of the molecule. A systematic study of several hydrated structures of four organic molecules based on 1,4-dihydroquinoxaline-2,3-dione (qd) is discussed. The organic molecules, qd, 6-methyl-1,4-dihydroquinoxaline-2,3-dione (mqd), 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-dione (dmqd) and 1,4-dihydrobenzo[g]quinoxaline-2,3-dione (Phqd), act as supramolecular crystal hosts for the clusters of water, with zero-, one- and two-dimensional arrays of water being observed. The hydrogen bonding in the structures, both within the water clusters and between the clusters and organic molecules, is examined. In particular, the structure of dmqd6 H2O contains a two-dimensional water sheet composed of pentagonal and octagonal units. Phqd3 H2O forms a hydrophilic extended structure encouraging the formation of one-dimensional chains consisting entirely of water. Both qd2 H2O and dmqd2 H2O can be considered to form one-dimensional chains, but only by utilising bridging carbonyl groups of the oxalamide moieties to form the extended array; if only the water is considered, zero-dimensional water tetramers are observed. The remaining hydrated structures, [Na+dmqd-]dmqdH2O, dmqd1/3H2O and mqd1/2H2O, all contain discrete water molecules but do not form extended water structures.  相似文献   

17.
The structure and stability for the association of water with dimethyl sulfoxide (DMSO) are investigated using the density functional M06‐2X level theory. Stable complexes are formed by the formation of hydrogen bonding between water and oxygen atom of DMSO molecule, while the electrostatic force between water and DMSO plays a vital role in deciding the structure. The water‐DMSO interactions are stronger than the interwater hydrogen bonds, which can be inferred from the shorter DMSO‐water bond distance compared with the water–water bond distance. The calculated solvent association energy does not saturate, and it remains favorable to attach additional water molecules to the existing water network. The calculated IR spectra shifts supports the formation stronger hydrogen bonding, while the electrostatic potential (ESP) plot supports the existence of weaker electrostatic interaction in the studied clusters. The polarizabilities for the ground state clusters were found to increase monotonically with the cluster size. The presence of additional electrostatic bonding between water and DMSO, devastates the linear hydrogen‐bonding network. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
The protonation of pyridine in water clusters as a function of the number of water molecules was theoretically analyzed as a prototypical case for the protonation of organic bases. We determined the variation of structural, bonding, and energetic properties on protonation, as well as the stabilization of the ionic species formed. Thus, we used supermolecular models in which pyridine interacts with clusters of up to five water molecules. For each complex, we determined the most stable unprotonated and protonated structures from a simulated annealing at the semi ab initio level. The structures were optimized at the B3LYP/cc-pVDZ level. We found that the hydroxyl group formed on protonation of pyridine abstracts a proton from the ortho-carbon atom of the pyridine ring. The "atoms in molecules" theory showed that this C-H group loses its covalent character. However, starting with clusters of four water molecules, the C-H bond recovers its covalent nature. This effect is associated with the presence of more than one ring between the water molecules and pyridine. These rings stabilize, by delocalization, the negative charge on the hydroxyl oxygen atom. Considering the protonation energy, we find that the protonated forms are increasingly stabilized with increasing size of the water cluster. When zero-point energy is included, the variation follows closely an exponential decrease with increasing number of water molecules. Analysis of the vibrational modes for the strongest bands in the IR spectra of the complexes suggests that the protonation of pyridine occurs by concerted proton transfers among the different water rings in the structure. Symmetric water stretching was found to be responsible for hydrogen transfer from the water molecule to the pyridine nitrogen atom.  相似文献   

19.
The functional mechanism of the light-driven proton pump protein bacteriorhodopsin depends on the location of water molecules in the active site at various stages of the photocycle and on their roles in the proton-transfer steps. Here, free energy computations indicate that electrostatic interactions favor the presence of a cytoplasmic-side water molecule hydrogen bonding to the retinal Schiff base in the state preceding proton transfer from the retinal Schiff base to Asp85. However, the nonequilibrium nature of the pumping process means that the probability of occupancy of a water molecule in a given site depends both on the free energies of insertion of the water molecule in this and other sites during the preceding photocycle steps and on the kinetic accessibility of these sites on the time scale of the reaction steps. The presence of the cytoplasmic-side water molecule has a dramatic effect on the mechanism of proton transfer: the proton is channeled on the Thr89 side of the retinal, whereas the transfer on the Asp212 side is hindered. Reaction-path simulations and molecular dynamics simulations indicate that the presence of the cytoplasmic-side water molecule permits a low-energy bacteriorhodopsin conformer in which the water molecule bridges the twisted retinal Schiff base and the proton acceptor Asp85. From this low-energy conformer, proton transfer occurs via a concerted mechanism in which the water molecule participates as an intermediate proton carrier.  相似文献   

20.
Broadband rotational spectroscopy of water clusters produced in a pulsed molecular jet expansion has been used to determine the oxygen atom geometry in three isomers of the nonamer and two isomers of the decamer. The isomers for each cluster size have the same nominal geometry but differ in the arrangement of their hydrogen bond networks. The nearest neighbor O? O distances show a characteristic pattern for each hydrogen bond network isomer that is caused by three‐body effects that produce cooperative hydrogen bonding. The observed structures are the lowest energy cluster geometries identified by quantum chemistry and the experimental and theoretical O? O distances are in good agreement. The cooperativity effects revealed by the hydrogen bond O? O distance variations are shown to be consistent with a simple model for hydrogen bonding in water that takes into account the cooperative and anticooperative bonding effects of nearby water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号