首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   14篇
  国内免费   198篇
化学   208篇
物理学   48篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   14篇
  2010年   8篇
  2009年   12篇
  2008年   15篇
  2007年   14篇
  2006年   12篇
  2005年   17篇
  2004年   10篇
  2003年   19篇
  2002年   10篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
排序方式: 共有256条查询结果,搜索用时 203 毫秒
61.
设计合成了新的饱和烷基类线型硝酮捕捉剂N-(亚乙基)-t-丁胺-N-氧化物(EBN)和N-(亚乙基)-1-二乙氧基磷酰基-1-甲基乙基胺N-氧化物(EPN),并运用ESR、MS、IR、UV等一系列手段对其结构进行了表征,同时对Fenton体系中产生的羟基及不同类型的氧中心、碳中心和硫中心自由基的捕获能力进行了系统的研究. 结果表明,这两种捕捉剂合成方法比较简单,产率较高,对羟基等自由基有比较强的捕捉能力. 期望本文的工作能为自由基捕捉剂的研究提供一个新的思路.  相似文献   
62.
甲醛是一种常见的室内污染气体,可对人类健康产生极大危害.如何高效环保地去除甲醛已成为亟待解决的问题.催化氧化降解法去除甲醛由于其高效、持久、产物清洁环保而被广泛研究.催化氧化法要求催化剂在反应过程中具有良好的氧化还原特性,因此,一般采用拥有多重价态的过渡金属氧化物作为催化剂材料.近年来,钴氧化物由于拥有多种价态且来源广泛,被广泛用于催化领域.目前已有关于钴基氧化物改性方面的研究报道.此外,许多关于钴基氧化物活性机理的研究也开展.这些研究对新催化材料的合成具有十分重要的指导意义.本文通过在空气氛围和氮气氛围中对钴基水滑石进行煅烧,得到了不同的衍生材料.利用氢气程序升温还原、X射线光电子能谱(XPS)、高分辨透射电镜、扫描电镜、比表面分析及拉曼光谱等表征手段发现,在氮气氛围中煅烧的材料,其表面含有更多的八配位二价钴以及表面活性氧物种,更有利于在反应过程中氧化甲醛分子,并更容易解离空气中的氧气分子.此外,还利用原位红外光谱对反应过程进行了表征,由氮气煅烧得到的钴基材料在甲醛催化降解过程中遵循M-K机理,甲醛分子首先由表面活性氧物种(O_2~–,O~–)氧化为中间体亚甲二氧基(DOM),之后该中间体转化为甲酸盐物种,后者进一步分解生成最终产物H_2O和CO_2.在该过程中,甲酸盐分解为控速步骤.根据XPS和拉曼光谱的结果,氮气煅烧材料比空气煅烧材料含有更多的二价钴,且在甲醛催化降解实验中,氮气煅烧材料表现出更好的转化能力.二价钴通常被认为是惰性的,并不具备催化氧化甲醛的活性.然而在本体系中,氮气煅烧材料表面含有一种八配位的二价钴,该配位环境与传统的活性三价钴的配位环境相同.此外,该二价钴拥有更高的表面能且更容易与氧气接触.另一方面,氮气煅烧材料表面含有更多的表面活性氧物种,能够提高材料的氧化还原能力.因此我们推测,在本文体系中,氮气煅烧材料能够拥有更好的活性主要是由于存在Co~(2+)-O~–-Co~(3+)和Co~(2+)-O_2~–-Co~(3+)这两种成分.在利用原位红外表征手段对反应中间过程进行探究时,为了证明氧的重要作用,我们分别向催化剂表面通入甲醛+氮气和甲醛+氧气+氮气两种气流.结果显示,在有氧气参与的过程中,主要产物为甲酸盐和碳酸盐,而在没有氧气参与的过程中,在催化剂表面观察到DOM、碳酸盐、甲酸盐和甲醛的吸附峰.这说明有氧气参与时催化剂能够快速地将甲醛氧化,而在不通入氧气的情况下,DOM先快速生成,之后有甲酸盐生成.这说明氧气将甲醛先氧化为DOM,再进一步转化为甲酸盐.甲酸盐的分解较慢,不断累积,导致在氧气充足的情况下,依旧可以观察到材料表面大量的甲酸盐.因此,甲酸盐的分解为该体系的控速步骤.  相似文献   
63.
本文用单分子探测研究了外膜蛋白OmpT在Tween-20与十二烷基-β-D-麦芽糖苷(DDM)胶束中的折叠。我们制备了单分散的OmpT,观察到OmpT在不同浓度尿素的Tween-20和DDM胶束中的折叠与去折叠。OmpT在Tween-20胶束中形成的折叠态与其在DDM中折叠形成的天然OmpT结构相似,但稳定性和酶活性均低于天然OmpT。与此相比,在Tween-20中OmpA只在低浓度尿素中折叠,OmpC不折叠。荧光相关光谱(FCS)结果表明折叠的外膜蛋白与去垢剂胶束形成复合体。在β桶折叠机器(BAM)复合体存在时,OmpT比OmpA和OmpC的折叠更加高效。三种外膜蛋白在Tween-20和BAM复合体存在下的折叠结果表明,OmpT比OmpA与OmpC更容易折叠。人们猜测不同性质的外膜蛋白与BAM复合体作用的方式不同,本文的研究结果为这种猜测提供了支持。由于Tween-20常被用于防止单分子实验中的非特异性吸附,本文的结果也提醒人们要注意蛋白与Tween-20相互作用对实验结果的影响。  相似文献   
64.
混合量子-经典方法在复杂分子体系动力学过程的模拟方面有重要应用.我们采用Ehrenfest方法、surfacehopping方法和混合量子经典Liouville方程计算了在非绝热极限下的电荷转移速率.然后将这三种方法应用于有机半导体材料电荷转移速率的计算.研究结果发现,Ehrenfest方法和surface hopping方法可能严重偏离正确的结果.偏离的原因是这两种方法没有正确处理相干项的运动,而且这种偏离在涉及到高频模式时显得更加严重.  相似文献   
65.
对生命体系中的氧自由基,Spin trapping-ESR方法是公认的特征分析手段[1].然而,对超氧阴离子自由基(O2-·)而言,其自由基加合物稳定性差.对此,人们通过改变硝酮的取代基团,设计出更为有效的O2-·捕获探针[2,3].另外,Zweier研究组[4,5]还应用密度泛函理论研究了影响五元环状硝酮  相似文献   
66.
简要总结了我们在C=C及C=O双键低温加氢双金属催化剂方面的最新研究成果. 首先, 我们以环己烯加氢为探针反应, 证明了平行使用多种研究手段的重要性, 包括单晶表面的基础研究与DFT计算, 多晶表面的合成与表征, 负载型催化剂的制备与性能测试等. 其次, 总结了双金属催化剂在其他加氢反应, 如丙烯醛C=O双键的选择性加氢, 苯的低温加氢, 以及乙炔的选择性加氢等反应中的应用. 最后, 讨论了利用金属碳化物代替贵金属Pt以减少双金属催化剂中Pt用量的可能性.  相似文献   
67.
简要总结了我们在C=C及C=O双键低温加氢双金属催化剂方面的最新研究成果. 首先, 我们以环己烯加氢为探针反应, 证明了平行使用多种研究手段的重要性, 包括单晶表面的基础研究与DFT计算, 多晶表面的合成与表征, 负载型催化剂的制备与性能测试等. 其次, 总结了双金属催化剂在其他加氢反应, 如丙烯醛C=O双键的选择性加氢, 苯的低温加氢, 以及乙炔的选择性加氢等反应中的应用. 最后, 讨论了利用金属碳化物代替贵金属Pt以减少双金属催化剂中Pt用量的可能性.  相似文献   
68.
氮氧化物火花放电化学反应的激光磁共振(LMR)研究   总被引:3,自引:3,他引:0  
自然界的闪电就是一种火花放电,在闪电中有多种放电化学反应过程发生,氮氧化物与其它原子分子的放电化学反应是一个重要方面,利用高灵敏度的LMR方法研究氮氧化物的火花放电反应,NO2的火花放电,发生分解反应生成NO,氮氧化物加水蒸气经放电,反应转变98%的NO2,反应转变80%的NO,加入氨蒸气经放电,能完全反应转变NO2,反应转变90%的NO.这些也为治理大气污染提供了有用的数据.  相似文献   
69.
XO(X=F,Cl,Br,I)自由基的PES和DFT理论研究   总被引:1,自引:0,他引:1  
XO(X=F,Cl,Br,I)自由基的PES和DFT理论研究洪功义王殿勋*(北京分子动态与稳态结构国家重点实验室,中国科学院化学研究所,北京100080)南极臭氧空洞的发现引起全球人的震动,继而人们在北半球欧洲和北美上空也发现臭氧空洞。今天人们逐渐认...  相似文献   
70.
卷烟烟气中的瞬态自由基对人体健康是相当有害的,而检测活性自由基最常用的方法是自旋捕获方法. 本研究中使用高效新型捕捉剂DEPMPO能够直接在水相中捕捉到烷基自由基与羟基自由基,并未发现烷氧自由基加合物. 考虑到DEPMPO对活性自由基的捕捉能力和加合物ESR谱图解析特征性都优于PBN与DMPO,且在有机溶剂中溶解较多的氧分子. 因此认为以往文献中所捕获的烷氧自由基来源于烷基自由基氧化后的次级自由基产物.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号