首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10419篇
  免费   1119篇
  国内免费   9066篇
化学   16952篇
晶体学   180篇
力学   378篇
综合类   356篇
数学   823篇
物理学   1915篇
  2024年   69篇
  2023年   367篇
  2022年   368篇
  2021年   356篇
  2020年   336篇
  2019年   376篇
  2018年   290篇
  2017年   350篇
  2016年   457篇
  2015年   464篇
  2014年   793篇
  2013年   749篇
  2012年   601篇
  2011年   661篇
  2010年   636篇
  2009年   786篇
  2008年   762篇
  2007年   765篇
  2006年   839篇
  2005年   874篇
  2004年   909篇
  2003年   956篇
  2002年   816篇
  2001年   925篇
  2000年   637篇
  1999年   625篇
  1998年   592篇
  1997年   636篇
  1996年   587篇
  1995年   515篇
  1994年   439篇
  1993年   443篇
  1992年   363篇
  1991年   373篇
  1990年   305篇
  1989年   301篇
  1988年   88篇
  1987年   49篇
  1986年   53篇
  1985年   40篇
  1984年   22篇
  1983年   20篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
陈凤娟  刘罗  张子露  曾伟 《有机化学》2023,(10):3454-3469
硅杂化合物广泛存在于药物分子和具有特殊用途的功能材料中.与其同主族的全碳母体化合物相比,通常硅元素的存在赋予了相应的硅杂化合物特殊的生物活性和独特的物理化学性能.概述了近年来可见光催化有机硅的合成方法和策略,并对其反应机理和局限性予以分析和讨论.  相似文献   
62.
生物质碳基材料具有可调的微观结构、丰富的表面活性中心、优良的导电和导热性能以及较大的比表面积,已经成为新能源领域的重要基础材料.然而,应用于锌-空气电池中时,碳基材料高电位下的碳腐蚀问题严重影响了电池的稳定性,因此,开发具有低过电位的析氧反应(OER)催化剂来降低充电电压是解决该问题的关键.本课题组采用一种低温磷化策略制备了具有低OER过电位的P修饰的Fe3O4/Fe2N和生物质碳复合催化剂(P-Fe3O4/Fe2N@NPC),其具有较好的双功能氧反应活性,氧还原反应(ORR)的半波电位为0.86 V,仅需要280 m V的OER过电位就可以达到10 m Acm-2的电流密度.以P-Fe3O4/Fe2N@NPC作为正极组装的锌-空气电池表现出低的充放电电压差和长期稳定性,在目前报道的碳基催化剂应用于锌-空气电池中具有很大优势.此外,采用X射线光电子能谱(XPS)、拉曼光...  相似文献   
63.
采用多周期的电化学循环伏安(CV)法在泡沫镍(NF)上一步制备了镍基纳米材料修饰电极(Ni(OH)2/NF)用于α-糖苷酶抑制剂的酶抑制活性评价,并基于此建立了一种简便的中药糖苷酶抑制剂筛选方法。采用X射线粉末衍射仪和扫描电镜表征修饰电极表面的结构和形貌;采用CV法和计时电流法测试电极的电化学性能。结果表明,Ni(OH)2/NF传感器检测复杂酶体系中的葡萄糖具有良好的电化学响应,灵敏度高达3222μA·mmol/(L·cm2),线性范围为3.0~6000μmol/L,检出限低至0.9μmol/L (S/N=3)。采用临床降糖药物阿卡波糖验证了此传感器用于α-糖苷酶活性检测的可行性;并将传感器应用于莲须提取液的酶抑制效果评价,发现莲须具有一定的α-糖苷酶抑制活性,其半数抑制浓度(IC50)为3.31 g/L。本研究结果表明,研制的传感器适用于α-糖苷酶抑制活性分析,为天然降糖药物筛选提供了一种新方法。  相似文献   
64.
甲醇制烃(MTH)反应作为一条非石油可持续路线制备重要的平台化学品,得到学术界和工业界的广泛关注.根据主要产物的不同, MTH反应又分为甲醇制烯烃(MTO)、甲醇制汽油(MTG)和甲醇制芳烃(MTA).MTO反应已经实现了商业化应用,但其催化效率,即烯烃选择性和催化剂寿命仍有待提高.为开发高效的MTH催化剂,其机理研究得到了研究者的广泛关注.MTH反应稳态阶段的间接机理(即“烃池”机理)已达成基本共识,但反应诱导期的第一个C-C键的形成及转化过程一直是该领域具挑战性和争议性的课题.原位谱学技术的发展为探究MTH反应第一个C-C键的形成机理研究带来了机遇,目前,已有多条关于C-C键形成及转化路径的报道.然而,有关MTO反应机理,尤其是第一个C-C键形成及转化为“烃池”物种过程的报道和文献总结尚不充分.此外,有关机理研究用于指导高效MTO催化剂设计的文献综述较少.基于该反应重要的基础及应用研究背景,对其进行全面分析总结具有十分重要的意义.本文首先归纳总结了MTH反应的机理研究进展,包括第一个C-C键形成的直接机理、间接机理、“双循环”机理(提出及演变过程)以及由直接机理逐步转化为间接机理的...  相似文献   
65.
金属有机骨架(MOFs)材料因具有无机和有机的杂合性质、高度有序的多孔性、结构可修饰性、比表面积大和孔隙率高等特点,在催化领域具有广阔的应用前景。本文从氢能的开发利用角度出发,在纯MOFs、MOFs复合及衍生材料三个方面对近十年来过渡金属MOFs基催化剂在电解水制氢方面的重要研究进展进行了综述,着重针对材料的合成进行了探讨,以及在基础研究和产业应用的角度指出当前过渡金属MOFs基制氢催化剂面临的挑战和机遇,对其应用前景进行展望。  相似文献   
66.
金属有机骨架(MOF)材料由于其孔隙率高、比表面积大以及具有发达的内联通孔道结构等优点,可以作为优良的生物分子固定化载体。通过表面活性自组装策略制备了铈基介孔MOF(Ce-MOF-F),表征结果表明,该材料有大的比表面积和呈辐射状的介孔孔道结构。以其为载体、南极假丝酵母脂肪酶B(CALB)为模型酶,通过物理吸附法制备了生物催化剂CALB@Ce-MOF-F,对该固定化酶的酶载量和催化性能进行了研究。在优化条件下,CALB的负载量为162.0mg/g载体,水解活性为899.1U/g蛋白。与游离CALB相比,CALB@Ce-MOF-F表现出对高温、酸碱和有机溶剂等有更强的耐受性;将Ce-MOF-F用于多种酶的固定化,研究其作为载体的普适性,结果表明,介孔Ce-MOF-F对洋葱伯克氏菌脂肪酶(BCL)和漆酶有良好的固定效果,可以作为良好载体,并能对酶起到较好的保护作用。  相似文献   
67.
提出了计算脂肪胺类化合物的15N NMR化学位移的经验公式:δcal15N)=-380.2+ΣΔα+ΣΔβ+ΣΔγ+ΣΔδ+ΣC,结合最小二乘法通过线性回归得到了11种取代基参数,计算结果以133种化合物的133个15N NMR化学位移数据为样本点进行回归检验,置信度为99.5 %,约有94.7 %的15N NMR化学位移计算值的计算误差小于5.0(相对误差小于0.5 %).  相似文献   
68.
提出了计算羧酸甲乙酯中羰基17O-NMR化学位移的公式:δcal17O)=360.0+Δα+Δβ+Δγ,通过线性回归法确定了22种取代基参数.经回归检验表明该公式计算结果置信度为99.5%,与实验值的偏差Δδ在5.0以内的羰基17O-NMR化学位移计算值~100%.  相似文献   
69.
《高分子通报》2021,(6):15-25
介绍了Ziegler-Natta催化剂功能化的几种策略,以及其应用于聚烯烃高性能化的研究进展。Ziegler-Natta催化剂/先进聚合助剂复合策略可有效扩展Ziegler-Natta催化剂性能,其中Ziegler-Natta/ω-烯烃甲基二氯硅烷功能催化剂体系在制备长链支化/高熔体强度聚丙烯方面已显示出工业潜力,而Ziegler-Natta/非共轭α,ω-双烯烃体系为丙烯多相共聚提供了革命性的技术,使丙烯多相共聚不但可生产高抗冲聚丙烯(低橡胶含量),也可生产聚丙烯基热塑性弹性体(高橡胶含量)。Ziegler-Natta/茂(非茂)复合催化剂和纳米负载Ziegler-Natta催化剂可进一步丰富Ziegler-Natta催化剂性能,制备新型高性能聚烯烃材料。  相似文献   
70.
《高分子通报》2021,(6):131-136
采用非茂PNP型稀土钇催化剂1催化丁二烯和异戊二烯无规共聚合,制备出了异戊二烯摩尔含量为11%~53%,高顺式-1,4-立构规整的丁戊橡胶。通过~1H NMR、~(13)C NMR和GPC对所得共聚合的微观结构、立构规整性以及分子量及其分布进行了表征分析。采用密炼、开炼两步法将该系列丁戊橡胶与炭黑、各种助剂进行混炼和硫化成型。通过拉伸、阿克隆磨耗和动态热机械分析等实验,研究了异戊二烯含量、分子量大小等因素对丁戊橡胶硫化胶拉伸强度、撕裂强度、磨耗性能及其玻璃化转变温度和结晶性能的影响规律。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号