首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2017篇
  免费   257篇
  国内免费   479篇
化学   1513篇
晶体学   66篇
力学   289篇
综合类   12篇
数学   17篇
物理学   856篇
  2024年   4篇
  2023年   26篇
  2022年   37篇
  2021年   61篇
  2020年   72篇
  2019年   60篇
  2018年   54篇
  2017年   103篇
  2016年   106篇
  2015年   93篇
  2014年   119篇
  2013年   138篇
  2012年   132篇
  2011年   188篇
  2010年   123篇
  2009年   152篇
  2008年   138篇
  2007年   148篇
  2006年   134篇
  2005年   107篇
  2004年   104篇
  2003年   96篇
  2002年   66篇
  2001年   68篇
  2000年   68篇
  1999年   38篇
  1998年   52篇
  1997年   44篇
  1996年   27篇
  1995年   24篇
  1994年   31篇
  1993年   25篇
  1992年   18篇
  1991年   11篇
  1990年   17篇
  1989年   9篇
  1988年   9篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   9篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
排序方式: 共有2753条查询结果,搜索用时 234 毫秒
51.
The structural-phase state of the contact zone and the factors that influence on the strength of diamond retention in the diamond carbide composites were determined. Composites were obtained by the new hybrid technology that eliminates the reheating of the metalized coating. The elaborated technology combines the thermal diffusion metallization of a diamond and the sintering by the scheme of self-dosed impregnation in a one-stage technological cycle. By the methods of electron microscopy, X-ray diffraction analysis, and Raman spectroscopy the structural and phase characteristics of the interphase boundary were investigated. The improvement of chemical and mechanical adhesion between the diamond and carbide matrix was obtained. It was shown that the specific productivity of the samples with a metalized diamond component is 39% higher than those without metallization.  相似文献   
52.
With an attempt to fabricate large-area OLED lighting panels, we investigate slot-die coating of a small molecule (SM) hole transport layer (HTL). It is observed that SM HTL films formed by spin coating exhibit pinhole-like surface, whereas the films by slot-die coating show micro-sized hillocks due to agglomeration. As the plate temperature of the slot coater is increased, smaller hillocks appear more densely. To tackle it, a small amount of a polymer HTL is added into the SM HTL (Hybrid HTL). By the aid of entangled polymer chains, small molecules are prohibited from migrating and thus agglomerations disappear. The peak-to-peak roughness of the slot-coated hybrid HTL films is measured to be about 11.5 nm, which is slightly higher than that (~7 nm) of the polymer HTL film, but much lower than that (~1071 nm) of the SM HTL film. Similar results are also observed in spin-coated films. It is also addressed that OLED with the hybrid HTL shows higher luminous efficacy, compared to OLED with the SM HTL or the polymer HTL. We have further demonstrated that the dissolution problem occurring between two stacked layers with different solvents during slot-die coating can be suppressed to a great extent using such a combination of materials in hybrid structure.  相似文献   
53.
We have designed, fabricated and characterized a multi-layers antireflection coating on multispectral ZnS substrate, suitable for the infrared range of 8–12 μm. The 4-layers coating (Ge/ZnS/Ge/ZnS) with optimized thicknesses was fabricated by PVD technique and studied by FTIR, nanoindentation and AFM. From FTIR spectroscopy it was found that, in the wavelength range of 8–12 μm, the average transmittance of the double-side coated sample increases by about 26% and its maximum reaches about 98%. To improve the mechanical hardness, a bilayer of Y2O3/carbon was deposited on the coating. Nanoindentation test shows that the coating enhances the mechanical properties. The final coating have successfully passed durability and environmental tests.  相似文献   
54.
55.
Spin‐coated polymer blends possess a rich variety of accessible non‐equilibrium morphologies, formed through a process of phase separation and self‐assembly, the complexities of which remain incompletely understood. The technique of stroboscopic microscopy has now been developed to allow direct observations of microscopic and mesoscopic morphological development during spin‐coating and has afforded unequivocal information regarding morphological development. The technique so far has three modes of operation providing information on topographical, compositional, and crystal development. In this review, we look at the technique's development, its applications and comment on the future potential for this technique. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 17–25  相似文献   
56.
This paper studies the fabrication and characterization of 80 nm zinc oxide anti-reflective coating (ARC) on flexible 1.3 μm thin film microcrystalline silicon (μc-Si) solar cell. High resolution X-ray diffraction (HR-XRD) shows a c-axis oriented ZnO (0 0 2) peak (hexagonal crystal structure) at 34.3° with full width at half maximum (FWHM) of 0.3936°. Atomic force microscope (AFM) measures high surface roughness root-mean-square (RMS) of the layer (50.76 nm) which suggests scattering of the incident light at the front surface of the solar cell. UV–vis spectrophotometer illustrates that ZnO ARC has optical transmittance of more than 80% in the visible and infra-red (IR) regions and corresponds to band gap (Eg) of 3.3 eV as derived from Tauc equation. Inclusion of ZnO ARC successfully suppresses surface reflectance from the cell to 2% (at 600 nm) due to refractive index grading between the Si and the ZnO besides quarter-wavelength (λ/4) destructive interference effect. The reduced reflectance and effective scattering effect of the incident light at the front side of the cell are believed to be the reasons why short-circuit current (Isc) and efficiency (η) of the cell improve.  相似文献   
57.
Alternating-current losses in a two-layer superconducting cable, each layer being composed of 15 closely-spaced rectangular wires made up of second-generation superconductors when the ends of wires are coated by either a non-magnetic or strong ferromagnetic material having a U profile is numerically investigated. Computations are carried out through the finite-element method. The alternating-current losses do not increase significantly if the relative permeability of the coating is increased three orders of magnitude, provided that the current amplitude is less than half of the critical current in a superconducting wire. However, the losses are much higher for ferromagnetic coating if the amplitude of the applied current oscillating at 50 Hz is close to the critical current. The ferromagnetic coating is seen to accumulate the magnetic field lines normally on its surfaces, while the field lines are parallel to the long axes of the wires, leading to more significant flux penetration in the coated regions. This facilitates a uniform low-loss current flow in the uncoated regions of the wires. In contrast, coating with a non-magnetic material gives rise to a considerably smaller current flow in the uncoated regions, whereas the low-loss flow is maintained in the coated regions. Moreover, the current flows in opposite directions in the coated and uncoated regions, where the direction in each region is converse for the two materials.  相似文献   
58.
This paper deals with the thermal degradation and fire performance of silicone‐based coatings for protecting steel. In this study, the fire performance of silicone coatings as virgin or formulated materials is evaluated using two homemade fire testing methodologies: one similar to the “torch test” fire testing method and the other using a heat radiator test. It was shown that the performance of the silicone‐based coating used as thermal barrier can be improved incorporating a modifier (a mixture of polydimethylsiloxane and silica coated by a silane). In this case, silicone‐based coating swells and exhibits same fire performance as commercial intumescent coating at the torch test. It is shown that the incorporation of modifier in the silicone makes it to swell upon heating resulting in the formation of expanded material exhibiting low heat conductivity. Thermal degradation of the coating is also investigated: it occurs in three main steps leading to the formation of a tridimensional network characterized by the formation of Q4 structure at high temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
59.
Particle coating is an important method that can be used to expand particle-technology applications. Coated-particle design and preparation for nuclear fuel-element trajectory tracing were focused on in this paper. Particles that contain elemental cobalt were selected because of the characteristic gamma ray spectra of 60Co. A novel particle-structure design was proposed by coating particles that contain elemental cobalt with a high-density silicon-carbide (SiC) layer. During the coating process with the high-density SiC layer, cobalt metal was formed and diffused towards the coating, so an inner SiC–CoxSi layer was designed and obtained by fluidized-bed chemical vapor deposition coupled with in-situ chemical reaction. The coating layers were studied by X-ray diffractometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy techniques. The chemical composition was also determined by inductively coupled plasma optical emission spectrometry. The novel particle design can reduce the formation of metallic cobalt and prevent cobalt diffusion in the coating process, which can maintain safety in a nuclear reactor for an extended period. The experimental results also validated that coated particles maintain their structural integrity at extremely high temperatures (∼1950 °C), which meets the requirements of next-generation nuclear reactors.  相似文献   
60.
Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol–gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10 nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested “acceleration and smashing” mechanism as the main driving force of USAD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号