首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fabrication and characterization of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell
Authors:MZ Pakhuruddin  Y YusofK Ibrahim  A Abdul Aziz
Institution:Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
Abstract:This paper studies the fabrication and characterization of 80 nm zinc oxide anti-reflective coating (ARC) on flexible 1.3 μm thin film microcrystalline silicon (μc-Si) solar cell. High resolution X-ray diffraction (HR-XRD) shows a c-axis oriented ZnO (0 0 2) peak (hexagonal crystal structure) at 34.3° with full width at half maximum (FWHM) of 0.3936°. Atomic force microscope (AFM) measures high surface roughness root-mean-square (RMS) of the layer (50.76 nm) which suggests scattering of the incident light at the front surface of the solar cell. UV–vis spectrophotometer illustrates that ZnO ARC has optical transmittance of more than 80% in the visible and infra-red (IR) regions and corresponds to band gap (Eg) of 3.3 eV as derived from Tauc equation. Inclusion of ZnO ARC successfully suppresses surface reflectance from the cell to 2% (at 600 nm) due to refractive index grading between the Si and the ZnO besides quarter-wavelength (λ/4) destructive interference effect. The reduced reflectance and effective scattering effect of the incident light at the front side of the cell are believed to be the reasons why short-circuit current (Isc) and efficiency (η) of the cell improve.
Keywords:Zinc oxide  Anti-reflective coating  Thin film microcrystalline silicon solar cell  X-ray diffraction  Transmittance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号