首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2017篇
  免费   258篇
  国内免费   479篇
化学   1514篇
晶体学   66篇
力学   289篇
综合类   12篇
数学   17篇
物理学   856篇
  2024年   4篇
  2023年   26篇
  2022年   37篇
  2021年   61篇
  2020年   72篇
  2019年   60篇
  2018年   54篇
  2017年   103篇
  2016年   106篇
  2015年   93篇
  2014年   119篇
  2013年   139篇
  2012年   132篇
  2011年   188篇
  2010年   123篇
  2009年   152篇
  2008年   138篇
  2007年   148篇
  2006年   134篇
  2005年   107篇
  2004年   104篇
  2003年   96篇
  2002年   66篇
  2001年   68篇
  2000年   68篇
  1999年   38篇
  1998年   52篇
  1997年   44篇
  1996年   27篇
  1995年   24篇
  1994年   31篇
  1993年   25篇
  1992年   18篇
  1991年   11篇
  1990年   17篇
  1989年   9篇
  1988年   9篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   9篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
排序方式: 共有2754条查询结果,搜索用时 15 毫秒
101.
Electrophoretic deposition (EPD) was showed to be a feasible and convenient method to fabricate NiCoCrAlY coatings on nickel based supperalloys. The microstructure and composition of the NiCoCrAlY coatings after vacuum heat treatment were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). Isothermal-oxidation test was performed at 1100 °C in static air for 100 h. The results show that the major phases in electrophoretic deposited and vacuum heat treated NiCoCrAlY coating are γ-Ni and γ′-Ni3Al phases, also there is an extremely small quantity of Al2O3 in the coating. Composition fluctuations occur in the coating and a certain amount of titanium diffuse from the superalloy substrate to the top of the coating during vacuum heat treatment. The oxidation test results exhibit that the oxidation kinetics of this coating has two typical stages. The protective oxide layer is mainly formed in the initial linear growth stage and then the oxide layer hinders further oxidation of the coating in the subsequent parabolic growth stage. The coating can effectively protect the superalloy substrate from oxidation. A certain amount of rutile TiO2 is formed in the coating during oxidation and it is adverse to the oxidation resistance of the coating.  相似文献   
102.
A high wear-resistant gradient coating made of Ni/Co-based alloys on the surface of a Cu alloy substrate was synthesized using a YAG laser induced in situ reaction method. The coating consists of three layers: the first is a Ni-based alloy layer, the second and third are Co-based alloy layers. The microhardness increases gradually from 98 HV in the Cu alloy substrate to the highest level of 876 HV in the third layer. The main phase of the Co-based alloy layer is CoCr2(Ni,O)4, coexisting with the Fe13Mo2B5, Cr(Co(Mo, and FeCr0.29Ni0.16C0.06 phases. Wear tests indicate that the gradient coating has good bond strength and wear properties with a wear coefficient of 0.31 (0.50 for the Cu alloy substrate). Also, the wear loss of the coating is only 0.01 g after it has been abraded for 60 min, which is only one fifth of that of the Cu alloy of the crystallizer. Wear tests of the gradient coating reveal good adhesive friction and wear properties when sliding against steel under dry conditions. This novel technique may have good application to make an advanced coating on the surface of the Cu alloy crystallizer in a continuous casting process.  相似文献   
103.
Green-emitting phosphors Ca3SiO4Cl2:Eu2+ were prepared by the high temperature solid-state method. Sol-gel process was adopted to encapsulate the as-prepared phosphors with tetraethylorthosilicate (TEOS) as silicon coating reagent. Fluorescence spectrometer, scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) patterns were employed to characterize the emission spectra, the surface morphologies and the phase structures, respectively. The chemical stability testing was operated by the method of soaking the phosphors in deionized water and roasting them at different temperatures. The results indicated that the surfaces of the green phosphors were evenly coated by SiO2 and the phase structure of the coated phosphors remained the same as the uncoated samples. The luminance centre of Eu2+ did not shift after surface treatment and the luminance intensity of coated phosphors was lower than that of the uncoated samples. The results demonstrated that the water-resistance stability of the coated phosphor was improved to some degree because the pH value and the luminance intensity variation were both smaller than the uncoated phosphor after steeping within the same time. Moreover, the thermal stability of coated phosphors was enhanced obviously compared to the original samples based on the temperature dependent emission spectra measurement.  相似文献   
104.
We demonstrate a valuable method to generate reactive groups on inert polymer surfaces and bond antibacterial agents for biocidal ability. Polystyrene (PS) surfaces were functionalized by spin coating of sub-monolayer and monolayer films of poly(styrene-b-tert-butyl acrylate) (PS-PtBA) block copolymer from solutions in toluene. PS-PtBA self-assembled to a bilayer structure on PS that contains a surface layer of the PtBA blocks ordering at the air-polymer interface and a bottom layer of the PS blocks entangling with the PS substrate. The thickness of PtBA layer could be linearly controlled by the concentration of the spin coating solution and a 2.5 nm saturated monolayer coverage of PtBA was achieved at 0.35% (w/w). Carboxyl groups were generated by exposing the tert-butyl ester groups of PtBA on saturated surface to trifluoroacetic acid (TFA) to bond tert-butylamine via amide bonds that were further chlorinated to N-halamine with NaOCl solution. The density of N-halamine on the chlorinated surface was calculated to be 1.05 × 10−5 mol/m2 by iodimetric/thiosulfate titration. Presented data showed the N-halamine surface provided powerful antibacterial activities against Staphylococcus aureus and Escherichia coli. Over 50% of the chlorine lost after UVA irradiation could be regained upon rechlorination. This design concept can be virtually applied to any inert polymer by choosing appropriate block copolymers and antibacterial agents to attain desirable biocidal activity.  相似文献   
105.
Waterborne crackle decorative coatings and crack patterns   总被引:1,自引:0,他引:1  
A preparation method of waterborne crackle decorative coatings was reported in this paper and the factors that influence crack patterns were investigated. The crackle coating consisted of a waterborne basecoat and a waterborne topcoat. The basecoat was made from two-component epoxy emulsion and the topcoat was made from fluorine-containing acrylic emulsion, silicone-acrylic emulsion or styrene-acrylic emulsion. Three junction types of crack patterns were prepared by the three top coatings, which were T-junction, Y-junction and mixed junction. T-junction type with long and straight cracks was prepared from styrene-acrylic emulsion 296DS. Y-junction type with curve and short cracks was prepared from fluorine-containing acrylic emulsion A603C and mixed junctions type was made from silicone-acrylic emulsion. Crack patterns with different spacing were prepared by controlling the thickness of topcoat, dryness of basecoat or conditions of film forming. The characterize methods of type and spacing for crack pattern were developed and properties of coating film including adhesion, water resistance, scrub resistance and so on were tested. The results showed that the crackle coatings possessed satisfactory properties for practical application.  相似文献   
106.
The effect of heat treatment on the corrosion behavior of reactive plasma sprayed TiN coatings in simulated seawater was investigated by electrochemical methods such as the corrosion potential-time curve (Ecorr − t), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and SEM, etc. The results showed that the corrosion potential of TiN coatings increased after heat treatment; the corrosion current of the TiN coatings after heat treatment (be hereafter referred to as HT-TiN) was 13.3% of the untreated coatings (be hereafter referred to as UT-TiN), and the polarization resistance of HT-TiN was 20 times of UT-TiN, which indicated that the heat treatment had significantly increased the corrosion resistance of the coatings. The corrosion behavior of the coatings was mainly local corrosion, and the local corrosion behavior mainly took place at the microdefects (crack and pores) of the coatings. The porosity of the coatings was reduced after heat treatment. The reason was that TiN reacted with O2 to form TiO2 and Ti3O during the heat treating, and volume expansion took place, which led to denser microstructure. The corrosion resistance of the coatings was therefore increased.  相似文献   
107.
Peter Jur?i 《Applied Surface Science》2011,257(24):10581-10589
Samples made from Vanadis 6 PM ledeburitic tool steel were surface machined, ground, and mirror polished. They were heat treated and coated with CrN with and without Ag addition by reactive magnetron sputtering. The CrN film grew in a typically columnar manner. A small addition of 3% Ag did not lead to alterations in the growth mechanism. The hardness of the CrN coating was 16.79 ± 1.49 GPa compared to 15.97 ± 1.44 GPa for the coating with Ag addition. The Ag addition in the CrN improved adhesion of the coating, which can be attributed to the capability of CrAgN coating to accommodate higher deformation energy before failure. The CrAgN coating exhibited superior tribological properties at intermediate temperatures. Compared to pure CrN the friction coefficient is lowered to 70-75% when measured at 400 and 500 °C, respectively. This is reflected in a reduction in the volume wear, which was found to be three times lower for the coating containing Ag. Flexural strength decreased slightly for the CrN- or CrAgN-coated material compared to uncoated steel. However, as the decrease in flexural strength is very weak there is practically no risk of significant embrittlement of the investigated material due to the CrN coating with or without Ag addition.  相似文献   
108.
To reduce the core loss of electrical steel the vacuum arc ion plating technique has been used to deposit titanium nitride (TiN) layers on highly grain oriented electrical steel sheets. The layer thickness, the stresses of layers and coated sheets and the achieved reduction in core losses have been measured as functions of coating duration and applied bias voltage. Well adhered layers with high compressive stress up to 6.8 GPa have been produced. With increasing bias voltage the layer thickness decreases and the intrinsic stress of the layers increase. A further increase of bias voltage leads to a drop in stress due to thermal relaxation. In general, the tensile stress of the coated sheets rises with increasing layer thickness while the core loss of the coated material decreases with increasing tensile stress of the steel sheet and increasing bias voltage. The highest reduction of core loss has been found to be 28% (from P1.7=0.86 W/kg for commercially coated HGO electrical steel sheet with glass film to 0.62 W/kg for TiN coated material) and is due to the reduction of excess loss only.  相似文献   
109.
运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C包覆层的层状富锂固溶体材料Li [Li0.2Mn0.54Ni0.13Co0.13]O2.通过X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X射线能量散射谱(EDS)方法,研究了Ag/C包覆层对Li[Li0.2Mn0.54Ni03Co013]O2电化学性能的影响.结果表明,Ag/C包覆层的厚度约为25 nm,Ag/C包覆在保持了固溶体材料α-NaFeO2六方层状晶体结构的前提下,显著地改善了Li[Li0.0Mn054Ni0.13Co013]O2的电化学性能.在2.0-4.8 V (vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30次循环后,Ag/C包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%.循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li02Mn0.54Ni0.13Co013]O2颗粒的界面膜电阻与电化学反应电阻.  相似文献   
110.
涂碳铝箔对磷酸铁锂电池性能影响研究   总被引:1,自引:0,他引:1  
本文研究了使用涂碳铝箔作为正极集流体磷酸铁锂电池的性能。研究对比了使用普通铝箔和涂层铝箔的10 Ah软包磷酸铁锂电池的主要性能。研究表明:使用涂层铝箔不但可以提高磷酸铁锂材料的粘结性,而且使用导电涂层可以有效降低正极材料和集流体的接触内阻,从而减小电池内阻,提高电池倍率性能。与使用普通铝箔作为集流体相比,通过使用涂碳铝箔可以使得电池的内阻降低65%左右,但是,磷酸铁锂正极材料的克容量却偏低约5~10 mAh·g-1,首次效率也偏低4%左右;在快速放电15C倍率下,使用涂碳铝箔的电芯比使用普通铝箔容量提高约15%左右,10C放电倍率下,平台增加0.3~0.4 V;使用涂碳铝箔电芯的常温自放电率较高,但容量恢复率也较高;550周循环下,使用涂碳铝箔可以使得电池的循环性能提高约1%。而在电池低温性能方面,使用涂碳铝箔对低温性能并无改善。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号