首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2648篇
  免费   549篇
  国内免费   2694篇
化学   4508篇
晶体学   97篇
力学   30篇
综合类   92篇
数学   64篇
物理学   1100篇
  2024年   28篇
  2023年   115篇
  2022年   148篇
  2021年   155篇
  2020年   115篇
  2019年   125篇
  2018年   117篇
  2017年   127篇
  2016年   139篇
  2015年   171篇
  2014年   249篇
  2013年   267篇
  2012年   178篇
  2011年   184篇
  2010年   164篇
  2009年   206篇
  2008年   279篇
  2007年   215篇
  2006年   273篇
  2005年   207篇
  2004年   204篇
  2003年   237篇
  2002年   178篇
  2001年   203篇
  2000年   149篇
  1999年   164篇
  1998年   136篇
  1997年   143篇
  1996年   149篇
  1995年   130篇
  1994年   112篇
  1993年   115篇
  1992年   101篇
  1991年   100篇
  1990年   98篇
  1989年   96篇
  1988年   31篇
  1987年   25篇
  1986年   17篇
  1985年   24篇
  1984年   8篇
  1983年   5篇
  1982年   1篇
  1981年   2篇
  1951年   1篇
排序方式: 共有5891条查询结果,搜索用时 15 毫秒
31.
在质子交换膜燃料电池中,金属铂是最高效的阴极氧还原催化剂之一,但是铂昂贵的价格严重阻碍了其在燃料电池领域中的大规模商业化应用.通过铂与3d过渡金属(Fe、Co和Ni)合金化可以有效提高催化剂的氧还原活性,然而在实际的高腐蚀性、高电压和高温的燃料电池运行环境中,铂合金纳米粒子易发生溶解、迁移和团聚,从而导致催化剂耐久性差.同时过渡金属离子的溶出会影响质子交换膜的质子传导,并且一些过渡金属离子会催化芬顿反应,产生高腐蚀性?OH自由基,加快Nafion和催化剂的劣化.与过渡金属掺杂相比,非金属掺杂具有明显优势:一方面,非金属溶出产生的阴离子不会取代Nafion中的质子,也不会催化芬顿反应;另一方面,与3d过渡金属相比,非金属具有更高的电负性,其掺杂很容易调节Pt的电子结构.因此,本文通过非金属磷掺杂合成具有优异稳定性的核壳结构PtPx@Pt/C氧还原催化剂.通过热处理磷化商业碳载铂形成磷化铂(PtP2),经由酸洗处理产生富铂壳层,即PtPx@Pt/C.X射线粉末多晶衍射结果证明了PtP2相的存在,并且进一步通过电子能量损失谱对纳米粒子进行微区面扫描分析以及X射线光电子能谱分析证实了富铂壳层的存在,壳层厚度约1 nm.得益于核壳结构及磷掺杂引起的电子结构效应,PtP1.4@Pt/C催化剂在0.90 V(RHE)时的面积活性(0.62 mA cm–2)与质量活性(0.31 mAμgPt–1)分别是商业Pt/C的2.8倍和2.1倍.更重要的是,在加速耐久性测试中,PtP1.4@Pt/C催化剂在30000圈电位循环后质量活性仅衰减6%,在90000圈电位循环后仅衰减25%;而商业Pt/C催化剂在30000圈电位循环后就衰减46%.PtP1.4@Pt/C催化剂高活性与高稳定性主要归功于核壳结构、磷掺杂引起的电子结构效应以及磷掺杂增加了碳载体对催化剂粒子的锚定作用进而阻止了其迁移团聚.综上所述,本文为设计同时具有优异活性与稳定性非金属掺杂Pt基氧还原催化剂提供新的思路.  相似文献   
32.
蔡雅芝  陶李  黄根  张娜娜  邹雨芹  王双印 《催化学报》2021,42(6):938-944,中插1-中插5
氧的电催化还原反应是燃料电池装置与金属空气电池的阴极反应,具有重大的研究意义.在众多的非铂催化剂中,碳材料因其低廉的价格以及独特的物理化学性质受到了广泛的关注.自从发现氮掺杂的碳纳米阵列具有优异的氧还原活性后,不同类型的氮掺杂的碳也得到了深入研究.例如近年来兴起的由金属有机框架衍生的氮掺杂的碳材料,兼具丰富的氮位点及良好的三维结构.氮的掺杂对碳原子具有电子调控的作用,是其高氧还原活性的根本原因.本文对金属有机框架衍生的氮掺杂的碳材料进行进一步的电子结构的优化,以提升催化性能.功函是电子逸出表面所需的最少的能量,是材料的电子结构性质之一,其对氧还原反应的影响也有报道,早期以理论计算为基础,探究氧气分子在碳材料表面的解离能与氮掺杂的碳的表面功函的关系,后续则采用开尔文探针显微镜,直接测量了不同元素掺杂的碳表面功函,并建立起功函与氧还原动力学的线性关系.本文通过控制碳材料的功函来调节其电子结构.铯是一种经典的给电子物质,通过将电子注入到掺杂材料表面来降低其功函.因此,本文通过CsCO3与2-甲基咪唑、Zn(NO3)2煅烧形成铯修饰的氮掺杂碳.电镜及XRD均观察不到所得材料中铯的存在,证明碳层中无大颗粒团聚的铯物种.EDS元素分布图表明,铯在碳层中呈原子级均匀分布.Raman谱结果表明,碳的G带发生明显的位置偏移,证明其面内电子结构发生了明显的改变.XPS结果证明铯成功与氮原子配位,通过铯氮键将电子注入到碳骨架.UPS则最终显示,经过铯的修饰,碳表面功函从4.25 eV下降到3.6 eV.表面功函的降低有利于氧气分子的解离,也调节OOH*中间体的吸附,使其吸附的自由能更接近最优值.材料改性后氧还原性能明显提升,起始电位达到0.91 V vs RHE,半波电位达到0.83 V vs RHE,均接近商业Pt/C催化剂.氧还原反应的动力学电流密度随功函的降低而增大,验证了前人的结论.本文提供了一个较为新颖的电子结构调控策略,为设计新的氧还原催化剂提供了新的思路.  相似文献   
33.
周省  覃佳艺  赵雪茹  杨静 《催化学报》2021,42(4):571-582,中插13-中插19
随着能源危机的日益严峻,能源的储存和转换越来越受到人们的重视.目前人们加以开发和利用的清洁能源主要包括太阳能、风能、氢能、地热能以及电化学能等.其中,燃料电池和金属-空气电池等作为电化学器件为电化学能的开发及可持续利用提供了条件.特别是金属-空气电池以电极电位较负的金属如镁、铝、锌、铁等作负极,以空气中的氧或纯氧作正极,具有比能量高、性能稳定、价格便宜的特点.氧还原反应(ORR)和析氧反应(OER)是可再生电化学能量转换和储存过程中的两个关键电化学过程.贵金属(Pt/C,Ir/C,IrO2等)虽然具有高催化活性,但价格昂贵、资源匮乏限制了其大规模的使用和发展.此外,它们的催化性能单一,难以同时实现多反应的高效催化.目前,大量研究工作集中在开发低成本、高效的ORR和OER催化剂,用来代替昂贵的铂类贵金属催化剂.在能源器件设计中,由于OER和ORR反应发生在同一个电极上,若能制备出具有ORR和OER双功能催化性能的电催化剂,将在很大程度上降低能源器件的设计难度.最近,我们的研究工作揭示了吡啶-氮-钴(pyri-N-Co)配位结构在协同作用中的重要性,协同作用大幅度提升了NiCo2O4/N掺杂石墨烯的本征催化活性.虽然金属粒子与掺氮石墨烯的结合有利于催化活性和稳定性的提高,但二维石墨烯片之间由于π-π键相互作用,容易聚集和堆叠.在实际应用中,石墨烯片之间的堆叠会导致可达表面的损失,从而使复合催化剂利用率降低,结构稳定性变差.因此,制备富含充分暴露且高效的ORR/OER活性中心的电催化剂仍然是一个巨大挑战.本文采用激光辐照法和水热法制备了具有层间大孔和片内介孔相互交联结构且负载铁酸钴纳米颗粒的三维多级孔石墨烯复合电催化剂(CoFe/3D-NLG),研究了其微观结构与ORR/OER电催化性能的关系.比表面积和X射线光电子能谱测试结果表明,CoFe/3D-NLG具有大的比表面积(322.6 m2 g-1)和孔体积(0.715 cm3 g-1),并且富含吡啶氮-钴活性中心.电化学测试表明,对于OER电催化,CoFe/3D-NLG复合催化剂在10 mA cm-2处的过电势为304 mV,优于商用RuO2催化剂的322 mV;对于ORR电催化,CoFe/3D-NLG的半波电位达到872 mV,非常接近商用Pt/C催化剂(876 mV).此外,作为可充电锌空气电池的空气电极催化剂,CoFe/3D-NLG展现出了超高的开路电压(1.56 V)、高功率密度(213 mW cm-2)以及超低充放电电压(0.63 V),并且具有良好的充放电循环稳定性.CoFe/3D-NLG优异的ORR/OER电催化性能主要归因于以下两点:1)大量的吡啶氮-钴活性位点极大地加快了缓慢的氧电催化动力学,提高了每个活性位点的ORR/OER本征催化活性;2)丰富的层间大孔和面内介孔多级孔结构促进了整个石墨烯结构中的高效传质,因而在电催化过程中吡啶氮-钴活性位点得以充分暴露于电解液中.  相似文献   
34.
准确理解金属大环配合物(如N4-Fe2+)体系的氧化还原化学性能,对氧还原反应(ORR)电催化剂的基础研究和合理设计具有重要意义.本文采用微波法将三种不同酞菁铁类金属大环配合物吸附在碳纳米管上,分别记为(NH2)4FePc@CNTs,(t-Bu)4FePc@CNTs和FePc@CNTs,考察了取代基对Fe3+/Fe2+氧化还原电位的影响,以及碱性介质中的氧还原反应催化活性.结果表明,FePc@CNTs,(t-Bu)4FePc@CNTs和(NH2)4FePc@CNTs的ORR起始电位分别为0.98,0.96和0.96 V,而半波电位(E1/2)由高到低的顺序为FePc@CNTs(E1/2=0.91 V),(t-Bu)4FePc@CNTs(E1/2=0.87 V),(NH2)4FePc@CNTs(E1/2=0.83 V).与20%Pt/C(E1/2=0.85 V)相比,FePc@CNTsFePc@CNTs具有优异的ORR性能.在活性、稳定性和耐甲醇性方面,FePc@CNTs复合材料比其他复合材料表现出更高的ORR性能.研究发现,FePc上的供电子基团可以显著改变N4-Fe2+活性位点的电子云密度,增加dz 2轨道(HOMO)的能量,并观察到Fe2+/Fe3+氧化还原电位显著向阴极方向移动.结果表明,取代基的高电子贡献能力降低了HOMO和LUMO(O2的杂轨道*-轨道)之间的电子耦合,从而降低了氧还原催化活性.因此,FePc框架外围的供电子基团对ORR不利.本文阐明了取代基电子效应-金属大环配合物氧化还原电位与ORR催化性能之间的关系,为ORR催化剂活性中心的构建和调控提供了借鉴.  相似文献   
35.
朱鹏飞  尹晓荷  高新华  董国辉  徐景坤  王传义 《催化学报》2021,42(1):175-183,后插32-后插33
氧化锌作为一种半导体材料,具有合适的能带结构位置,高催化效率,低成本和环境可持续性,因而广泛用于光催化领域.然而,由于氧化锌的宽带隙,可见光吸收能力差以及光生电子-空穴对的快速复合,极大地影响了其光催化效率.通过引入氧空位调控光催化剂的结构被证明是一种可以改善光生载流子的分离,从而提高光催化性能的有效方法.本文以ZIF-8为前驱体,采用两步煅烧法合成了具有不同浓度氧空位分布的ZnO纳米光催化剂,通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)、电子顺磁共振(EPR)、荧光光谱仪(PL)等手段系统地分析了合成的光催化剂的理化性质,并评价了它们在可见光下光催化氧化去除NO反应性能.EPR结果表明,样品中氧空位的浓度取决于温度处理的过程.通过两步煅烧法得到氧化锌中氧空位的含量高于一步直接煅烧法所得的样品.此外,随着煅烧温度升高,合成的氧化锌晶格越完好,其氧空位含量越少.UV-Vis DRS结果表明,两步煅烧法合成的ZnO与商业的ZnO及一步法直接煅烧合成的ZnO相比,其吸光范围从紫外光拓展到了可见光,表现出了更加优异的吸光性能.光催化反应结果表明,与商业氧化锌和一步直接煅烧法所得样品相比,两步煅烧法合成的样品表现出了更优异的光催化去除NO性能,并抑制了中间产物毒性NO2的产生,促进了NO的深度氧化.具体反应路径为:在光照过程中,光生电子很容易被氧空位俘获,与O2反应产生更多的超氧自由基(·O2^-),从而将NO氧化成最终的产物硝酸盐.尤其有趣的是,先在350 ℃煅烧2小时再400℃煅烧1小时的两步法样品Z 350-400的NO去除效率分别比一步法样品Z 400(400℃煅烧)和商用ZnO高出1.5和4.6倍.这表明以MOF材料衍生的具有适当量氧空位的金属氧化物为一种高效去除NO的光催化剂具有很好的应用前景.  相似文献   
36.
质子交换膜燃料电池(PEMFCs)电堆中阴极Pt基催化剂的高用量造成其成本居高不下,成为阻碍燃料电池汽车商业化推进的重要原因,因此开发低Pt、高活性的Pt基催化剂势在必行.Pt合金催化剂能够有效地降低Pt用量,并通过对合金颗粒的元素比例、晶面、粒径等实行精确调控,显著提升氧还原(ORR)催化活性.然而,目前常用的制备方法由于原料与制备成本高昂、过程复杂大都难以适应规模化生产需求.电化学方法通过控制施加的电流或电位控制晶体生长.在水体系中该方法已得到验证,但由于Pt化合物的热力学标准电极电位与过渡金属元素之间相差较大,且对于过渡金属来说,电负性大多小于铂,因此还原电位通常负于析氢电位,使得二者难以实现共沉积.有机体系中电位窗口比水体系大得多,Pt与电位较负的过渡金属可实现共沉积,采用小分子有机溶剂也可避免溶剂清洗问题,具有应用潜力.本文提出了一种简单的一步电沉积方法,选择易溶于水的N,N-二甲基甲酰胺(DMF)作为溶剂,将碳载体滴涂到玻碳电极上作为工作电极,通过电化学方法直接将Pt-Ni合金沉积到碳载体上,并利用物化表征与密度泛函理论(DFT)理论计算来探究共沉积机理.透射电镜表征结果表明,在不同的沉积电位下均可得到分散均匀、粒径适当的催化剂;且随着电位值降低,催化剂颗粒分散得更均匀,颗粒粒径不断减小.元素分布和晶面结果表明,铂镍元素均匀分布于颗粒中.所有样品均表现出优异的ORR性能,最高的面积比活性达到商业催化剂的6.85倍.将材料表征、电化学表征与DFT计算结合,建立起了铂镍合金生长过程的模型,并发现了有机体系中独特的成核-生长机理.将体系中的DMF换成超纯水,用同样的方法进行沉积,得到的催化剂颗粒团聚严重,说明DMF的使用能够避免颗粒团聚.在单独铂的体系中沉积发现,负载量极小,表明体系中镍前驱体的添加对于催化剂的沉积过程起到重要作用.电化学表征结果表明,在所选用的DMF有机体系中,镍的还原电位与铂的十分接近,但还原动力学更慢,趋向于先形成吸附原子后快速还原.由此可以推测,在二者合金的形成过程中,镍在碳载体表面的缓慢还原而形成的吸附原子能够成为铂还原的活性位点,从而降低了铂还原成核所需的能量,使得载体上的成核位点大大增加,这与DFT模拟结果一致.DFT建立了碳上镍的位点和铂的位点,分别在上面进行铂的还原,发现镍位点上比铂位点上更容易实现铂沉积.本文提出了铂镍共沉积的机理:在过电位(即还原能量)下,铂的还原动力学较镍稍快,于是铂先还原形成晶核,但难以达到生长的临界半径,于是单独铂体系中的沉积负载量很少.载体上还原的镍为铂还原提供了大量的活性位点,促进了铂还原,并与镍共沉积.Pt-Ni表面则进一步促进了铂的沉积和颗粒的生长.综上,本文提出了一种用于制备铂合金催化剂的有机电沉积体系,实现了单分散的碳载铂镍合金催化剂的一步制备.随后,本文将材料表征、电化学表征与DFT计算相结合,建立起了有机体系中铂镍合金成核-生长过程的机理模型.  相似文献   
37.
过氧化氢既可用作环境友好的绿色氧化剂,也可用作燃料电池中的太阳能燃料,因而受到越来越多的关注.本文综述了太阳能驱动分子氧氧化水制备过氧化氢及其作为绿色氧化剂和燃料的研究进展.利用太阳能将水的e-和4e-氧化与分子氧的e-还原相结合,使光催化生产过氧化氢成为可能;本文讨论了与e-和4e-水氧化选择性及e-和4e-氧还原选择性相关的催化反应控制.由于光催化e-氧化水和e-还原分子氧的过程都产生过氧化氢,因此该组合的催化效率较高.太阳能光驱动水氧化及分子氧还原生产过氧化氢与过氧化氢催化氧化底物相结合,在该过程中分子氧用作最环保的氧化剂.  相似文献   
38.
刘雅洁  耿琳  康遥  方伟慧  张健 《催化学报》2021,42(8):1332-1337
利用太阳能是解决当前能源危机和环境问题的有效途径.二氧化钛是一种稳定性高、环境友好的新型光催化剂.近年来,具有精确结构信息的晶态钛氧团簇(PTCs)作为TiO2的分子结构模型受到广泛关注.目前大多数PTCs含有烷氧基,在空气中易发生水解.这在很大程度上限制了对其光催化性能的研究.在无机钛氧簇的外围修饰大量的共轭有机配体是一种有效提升PTCs稳定性的方法.此外,异金属的嵌入有助于修饰微观电子结构,从而也将影响光催化性能.铝是地球上最丰富的金属元素,其水解产物也大量存在于地壳表面.因此,Ti和Al的水解和光催化研究引起了我们的兴趣.目前,只有少数几例低核的Al掺杂PTCs晶态材料被报道,且其制备过程都需要多步反应.因此,合成高核的包含Al的PTCs材料是一项有趣且充满挑战的工作.本文利用有机配体的保护和异金属离子的掺杂成功地提高了PTCs晶体材料的稳定性.通过研究Ti和Al离子的水解,制备了一例核-壳型的纳米轮簇[Al7Ti14(μ2-O)7(μ3-O)14(L)35]·2CH3CN(1;L=苯甲酸).该轮簇中包含罕见的奇数环状结构,是目前核数最高的包含Al的PTC.借助单晶X射线衍射可以清晰观察到无机{Al7Ti14}核与有机保护配体之间的配位模式.此外,利用红外光谱、热重和漫反射光谱对该化合物进行了进一步表征.有机配体层和Al3+占据了Ti4+周围的烷氧基位点,使得该化合物呈现较高的空气、热以及酸碱稳定性.在已报道的PTCs晶态材料中,该化合物也展现出较高的光催化产氢速率(402.88μmol g-1h-1).借助催化过程中的光致变色现象、电子顺磁共振谱、荧光光谱以及光电流响应,我们推测了该化合物催化水分解产氢机理.该项工作不仅为制备稳定的PTCs材料提供了基础,也为新型光催化剂的设计提供了新的思路.  相似文献   
39.
吴倩  高庆平  孙丽梅  郭焕美  台夕市  李丹  刘莉  凌崇益  孙旭平 《催化学报》2021,42(3):482-489,中插48-中插52
电化学水分解制氢作为重要的生产氢能的新能源技术,包括氢气析出反应(HER)和氧气析出反应(OER).然而,OER进行的是多步电子转移过程,动力学过程缓慢且过电位高,严重制约了电解水制氢的发展.因此开发低成本、高效稳定的非贵金属催化剂替代贵金属催化剂(RuO2,IrO2)来降低过电位,减少能源消耗十分必要.Ni3S2由于其高导电性、高活性、低成本等优点,具有作为贵金属催化剂替代品的广阔应用前景,但其OER性能仍需进一步提高.对已有的有效OER催化剂进行表界面调控是提高催化剂性能的一种有效策略.CeO2中的Ce3+和Ce4+价态之间可以灵活过渡,使其具有良好的电子/离子导电性、可逆的表面氧离子交换和较高的储氧能力.CeO2的多价性使其有机会与其它基质产生强烈的电子相互作用,良好的电子/离子导电性和较高的储氧能力是提高催化剂析氧活性的有利因素.因此,用CeO2对Ni3S2进行修饰是提高其析氧活性的有效途径.基于此,本文运用水热和电沉积相结合的方法将CeO2修饰到Ni3S2纳米片上,制备得到生长于泡沫镍上的Ni3S2-CeO2纳米片阵列(Ni3S2-CeO2/NF),并运用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)等手段进行了表征,以三电极系统测试了其电催化析氧性能及稳定性,并通过密度泛函理论计算进行了验证.XRD结果表明,复合材料中确实存在Ni3S2和CeO2.通过SEM发现,泡沫镍基底上均匀分布着Ni3S2纳米片阵列;电沉积CeO2后,Ni3S2-CeO2仍保持其纳米片特性,但表面变得粗糙.Ni3S2-CeO2的TEM结果也证实了纳米片结构的形成,高分辨率TEM图像清晰的显示出Ni3S2和CeO2之间具有明显的界面.XPS结果表明,Ni3S2-CeO2的Ni 2p的结合能与Ni3S2相比出现负位移.与纯CeO2的Ce 3d谱图相比,Ni3S2-CeO2杂化体系中Ce4+的比例明显增加,表明Ce的价态发生了重排,部分电子转移给了Ni元素.这些结果均说明Ni3S2与CeO2之间存在着较强的电子相互作用.相应的电催化测试结果显示,在1.0 M KOH中,当电流密度达到20 mA cm–2时,Ni3S2/NF需提供356 mV的过电位,Ni3S2-CeO2/NF只需264 mV的过电位,仅次于RuO2/NF.而且,Ni3S2-CeO2/NF在中性条件下也显示出了较理想的析氧活性.Ni3S2-CeO2/NF的Tafel斜率明显低于CeO2/NF和Ni3S2/NF,表明其具有良好的OER反应动力学.循环伏安法和计时电位法结果均表明,Ni3S2-CeO2/NF具有良好的电化学稳定性.电化学阻抗谱测试结果表明,与Ni3S2/NF和CeO2/NF相比,Ni3S2-CeO2/NF明显具有更小的半圆直径,说明其电荷转移阻抗更小,进一步表明CeO2的修饰有助于催化过程中电子的快速转移.在非法拉第区域的循环伏安扫描曲线以及拟合扫描速度对电容电流曲线结果显示,Ni3S2-CeO2/NF的最大电容值大于CeO2/NF和Ni3S2/NF,表明其暴露了更多的活性位点,具有更大的电化学活性表面积;而且,Ni3S2-CeO2/NF在400和500 mV时的电催化析氧转换频率明显高于Ni3S2/NF和CeO2/NF,进一步说明Ni3S2-CeO2/NF具有更高的本征催化活性.密度泛函理论计算表明,由于*OH,*O和*OOH与Ni3S2-CeO2中的Ni和Ce原子相互作用的存在,使得反应中间产物与Ni3S2-CeO2之间的结合强度较纯Ni3S2或CeO2强,使其显示出了更高的OER性能.在经过24 h连续电解后,SEM和TEM结果均表明,Ni3S2-CeO2/NF材料仍保持了其纳米片形貌.稳定性测试后的XPS结果表明,Ni 2p对应的峰强度降低,而与氧化镍物种对应的峰强度增强;S元素在Ni3S2-CeO2表面的信号强度明显降低.根据文献报道,在强烈的氧化环境下,过渡金属硫化物会部分转化为氧化物或氢氧化物,这通常被认为是OER过程的实际催化物种.  相似文献   
40.
蒋军生  韦何磊  谭爱东  司锐  张伟德  余宇翔 《催化学报》2021,42(5):753-761,中插1-中插4
单原子催化剂凭借其超高的原子利用率及在某些反应中表现出的出色催化效果,被认为是最有前途的电催化剂之一,引起了研究人员的极大热情和兴趣.制备高金属含量的单原子催化剂是基础研究和实际应用的前提和关键.然而,由于原子表面自由能随着尺寸的减小而急剧增加,在制备和催化过程中,单原子催化剂的金属原子很容易聚集成团簇甚至颗粒,因此如何制备高负载量的单原子催化剂仍然是一个不小的挑战.在众多单原子催化剂中,非贵金属中铁基单原子被认为是燃料电池中的Pt催化剂的有效替代品.在燃料电池的核心反应–电化学氧还原反应中,Fe-Nx被证明是铁单原子催化剂中的主要活性中心.因此,为了获得更好的氧还原性能,提高铁单原子催化剂中Fe-Nx的含量就显得非常关键.前期已报道了一些关于制备高Fe含量的铁单原子催化剂材料的策略,例如空间限域策略和配位合成策略.其中卟啉和葡萄糖作为配位剂,双氰胺和三聚氰胺可热解成氮掺杂碳材料以捕获金属原子,形成M-Nx.同时,具有高比表面积的富氧碳载体可以通过掺杂氮来作为固定金属原子的位点.我们开发了一种简单直接的方法,通过碳辅助金属配合物热解法制备高金属含量的Fe-N4单原子催化剂,即在最佳碳化温度800℃、三聚氰胺存在下对氮掺杂多孔碳辅助分散铁邻苯二胺配合物进行热解.在该方法中,氮掺杂多孔碳是一种具有丰富氮缺陷,高表面积(1267 m2?g–1)和良好分散性的多孔生物质碳材料.邻苯二胺作为含两个氨基的二齿配体,可以很容易地与过渡金属配位,形成稳定的平面四配位络合物.此外,由于在高温条件下过渡金属的催化作用,邻苯二胺也被用作氮掺杂碳的前体.因此,氮掺杂多孔碳和邻苯二胺是合成高金属含量铁单原子催化剂的关键前驱体.通过X射线光电子能谱,大角度环形暗场扫描透射电子显微镜和X射线吸收精细结构光谱表征,发现所制备的铁单原子催化剂中铁原子以单个原子的形式锚固在碳载体上,并与碳基质的四个掺杂氮原子配位,得到Fe-N4的构型.通过调节Fe前驱体量,铁单原子催化剂中Fe的最高负载量达到7.5 wt%,在目前已经报道的铁单原子催化剂中排第四.电化学氧还原测试表明,在0.10 M KOH溶液中,随着铁含量的增加,铁单原子催化剂的氧还原性能逐渐提高.其中250Fe-SA/NPC-800样品表现出最高起始电位0.97 V和最正的半波电位0.85 V,可与市售的40%Pt/C催化剂相媲美.和已报道的铁单原子催化剂相比,由于我们制得的催化剂的比表面积较低,只有247 m2?g–1,所以制约了催化剂的性能.在混合动力学势域中,根据Koutecky-Levich方程计算得出的电子转移数约为3.6,表明250Fe-SA/NPC-800主要催化四电子转移过程,这可以归因于以Fe-N4活性中心降低了四电子过程中关键中间体的形成能垒及过程的自由能变化.此外,250Fe-SA/NPC-800展现了较高的电化学稳定性.连续工作6 h后,250Fe-SA/NPC-800保留了超过87%的电流密度,而Pt/C表现出明显的衰减,仅保留了49%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号