首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24483篇
  免费   5742篇
  国内免费   17398篇
化学   31824篇
晶体学   1707篇
力学   968篇
综合类   792篇
数学   1541篇
物理学   10791篇
  2024年   189篇
  2023年   869篇
  2022年   986篇
  2021年   1186篇
  2020年   963篇
  2019年   1152篇
  2018年   941篇
  2017年   1130篇
  2016年   1339篇
  2015年   1457篇
  2014年   1826篇
  2013年   2230篇
  2012年   2204篇
  2011年   2072篇
  2010年   1904篇
  2009年   2056篇
  2008年   2220篇
  2007年   2199篇
  2006年   2302篇
  2005年   2234篇
  2004年   2195篇
  2003年   1998篇
  2002年   1677篇
  2001年   1707篇
  2000年   1157篇
  1999年   1031篇
  1998年   879篇
  1997年   752篇
  1996年   794篇
  1995年   640篇
  1994年   606篇
  1993年   519篇
  1992年   487篇
  1991年   543篇
  1990年   452篇
  1989年   404篇
  1988年   133篇
  1987年   59篇
  1986年   35篇
  1985年   50篇
  1984年   16篇
  1983年   21篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
22.
以壳聚糖(CS)为生物模板,采用低温水热法成功制备出了多层状碱式碳酸锌(ZCHO)微晶.采用XRD、SEM和TG等手段对产物的结构、形态和热学性能进行了表征,结果表明,单个ZCHO微晶颗粒均是由许多ZCHO纳米片构成的.添加适量的CS对形成多层状ZCHO微晶起到了至关重要的作用.热重分析结果表明,CS辅助得到的碳酸锌微晶热稳定性较高.等温吸附实验表明,在室温下,多层状ZCHO微晶能有效脱除水体中的Cu2,去除量与浓度关系符合Freundlich模型.最后讨论了多层状ZCHO微晶大容量去除Cu2+的可能机理.  相似文献   
23.
采用水热法首先制备稀土Nd3+掺杂介孔TiO2,进而复合氧化石墨烯(GO)合成了系列Nd3+-介孔TiO2/GO复合材料.通过X射线衍射(XRD)、透射电镜(TEM)、孔结构分析(BJH与BET)、X射线光电子能谱(XPS)和紫外-可见漫反射(UV-vis)等测试手段对样品的微观结构、形貌、样品表面各元素价态及谱学性质进行表征,并以甲基橙模拟污染物测试其光催化性能.结果表明,所制样品均为锐钛矿结构TiO2,晶粒尺寸在3~4 nm之间;从UV-vis测试结果分析可知,与Nd3+-介孔TiO2和TiO2/GO相比,稀土Nd3+和GO的协同效应更能有效减小TiO2半导体禁带宽度,从而增加其对可见光的吸收.此外,不同光照射下光催化降解甲基橙的实验表明,所制备样品均有较强的紫外及可见光光催化性能,其中系列Nd3+-介孔TiO2/GO复合体系可见光光催化性能更为显著.  相似文献   
24.
25.
26.
27.
提出利用拉格朗日乘子法重新证明σ2算子的最优凹性,并定义了一个凸锥Γ3?=λ=(λ1,λ2,?,λn)Rn:σ1(λ)>0,σ2(λ|i)>0,1in。利用σ2算子的最优凹性,给出了σ2HessianPogorelovC2内估计,进而证明了σ2(D2u(x))=1,xRn的满足二次多项式增长条件的Γ3?-凸整解为二次多项式。  相似文献   
28.
徐艳  陈艳  宫贵贞  董黎明  王鹏  李靖  宋明 《化学教育》2019,40(20):70-74
以甲烷-二氧化碳重整制合成气为实例,设计探究性实验,将合成气的制备和现代分析技术应用于化工专业实验的教学实践中以提高学生的创新和实践能力。实验包括催化剂的制备,催化剂的性能评价和催化剂的表征等3大部分。采用工业最常用的浸渍法制备含有不同助剂的Ni/X/γ-Al2O3(X为Co,Fe,MgO,CeO2)催化剂,以甲烷-二氧化碳重整反应评价其催化性能,并采用XRD、H2-TPR、BET和TG对催化剂的微观结构进行表征。结合催化剂的性能评价结果和表征结果,探讨不同助剂对镍基催化剂性能的改善效果及机制。通过开设该实验,可以让学生了解化工学科的前沿知识以及现代分析技术的基本原理和用途,掌握专业的实验操作、数据处理和谱图绘制方法,提高学生的专业素养和综合能力。  相似文献   
29.
30.
许泽桐  谢奎 《结构化学》2021,(1):31-41,1
The ever-decreasing fossil fuels and the increasing greenhouse effect have caused substantial concern.Solid oxide electrolyser cell(SOEC)with La0.75Sr0.25Cr_(0.5 )Mn0.5O3-δ(LSCM)as a cathode was used for CO2 electrolysis to CO.In this work,the metal-oxide interface was constructed on the LSCM framework by in-situ exsolution and impregnation,and the uniform distribution of metal nanoparticles on the LSCM framework was confirmed by spectroscopy techniques and electron microscopy techniques.The existence of three-phase boundary promoted the absorption and electrolysis of CO2.(La0.75 Sr0.25)0.9(Cr_(0.5 )Mn0.5)0.9(Ni0.5 Cu0.5)0.1 O3-δ(LSCMNC)showed the best electrolytic CO2 performance at 850℃and exhibited excellent electrocatalytic activity after 100 hours of long-term testing and 8 redox cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号