首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5743篇
  免费   427篇
  国内免费   6027篇
化学   11414篇
晶体学   72篇
力学   35篇
综合类   188篇
数学   7篇
物理学   481篇
  2024年   62篇
  2023年   254篇
  2022年   255篇
  2021年   217篇
  2020年   207篇
  2019年   235篇
  2018年   185篇
  2017年   214篇
  2016年   263篇
  2015年   261篇
  2014年   433篇
  2013年   418篇
  2012年   346篇
  2011年   340篇
  2010年   346篇
  2009年   415篇
  2008年   410篇
  2007年   414篇
  2006年   422篇
  2005年   426篇
  2004年   478篇
  2003年   559篇
  2002年   506篇
  2001年   622篇
  2000年   438篇
  1999年   393篇
  1998年   362篇
  1997年   416篇
  1996年   378篇
  1995年   336篇
  1994年   283篇
  1993年   299篇
  1992年   231篇
  1991年   233篇
  1990年   192篇
  1989年   185篇
  1988年   44篇
  1987年   28篇
  1986年   24篇
  1985年   27篇
  1984年   16篇
  1983年   18篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 957 毫秒
991.
罗俊  贾礼超  颜冬  李箭 《化学学报》2022,80(3):317-326
过渡金属Ni是地球上储量丰富的金属元素, 在加氢脱硫、重整制氢等催化领域应用非常广泛, 但是关于Ni基催化剂在烷烃脱氢方面的研究较少; 因此, 本工作采用不同的方法, 制备了三种结构的Ni基负载催化剂, 即尖晶石分解型、浸渍型和钙钛矿析出型, 并在700 ℃、C2H6-N2气氛中和50 mL•min-1气体流速下, 探索了它们的乙烷脱氢性能. 结果表明: 尖晶石分解型催化剂Ni1-xCuxCr2O4还原后在Cr2O3表面形成Ni-Cu合金颗粒, 能有效钝化Ni的C—C键断裂活性, 提高乙烯的选择性. Ni含量过高时, Ni不能有效地分散而形成大的金属团簇, 造成乙烷过度裂解, 乙烯选择性较低. 浸渍负载型催化剂NixMy/Al2O3 (M为Cu或Ag) 比表面积大, 表面活性位点分散, 但活性金属与载体结合力弱, 在高温下不稳定; Cu或Ag与Ni形成合金, 可有效提高乙烯选择性, Ag较Cu的效果更佳. 钙钛矿析出型催化剂LaCr1-xNixO3(LCNi-100x)在还原气氛中析出均匀细小的Ni颗粒, 其与基体结合力强, 抗积碳性能和稳定性较高; 含15% Ni的LCNi-15还原后(R-LCNi-15)表现出最好的催化性能, 乙烯产率最高(24%), 同时具有较好的抗积碳性能和稳定性以及氧化再生性.  相似文献   
992.
氢气是一种清洁高效的能源载体,通过海水电解规模化制备氢气能够为应对全球能源挑战提供新的机遇。然而,缺乏高活性、高选择性和高稳定性的理想电极材料是在腐蚀性海水中连续电解过程的一个巨大挑战。为了缓解这一困境,需要从基础理论和实际应用两方面对材料进行深入研究。近年来,人们围绕电极材料的催化活性、选择性和耐腐蚀性进行了大量的探索。本文重点总结了高选择性和强耐腐蚀性材料的设计合成与作用机制。其中详细介绍了多种电极材料(如多金属氧化物、Ni/Fe/Co基复合材料、氧化锰包覆异质结构等)对氧气生成选择性的研究进展;系统论述了各种材料的抗腐蚀工程研究成果,主要讨论了本征抗腐蚀材料、外防护涂层和原位产生抗腐蚀物种三种情况。此外,提出了海水电解过程中存在的挑战和潜在的机遇。先进纳米材料的设计有望为解决海水电解中的氯化学问题提供新思路。  相似文献   
993.
本文通过简单的一步水热法得到Ni2P-NiS双助催化剂,之后采用溶剂蒸发法将Ni2P-NiS与g-C3N4纳米片结合构建获得无贵金属的Ni2P-NiS/g-C3N4异质结。研究结果表明,优化后的复合材料具有良好的光催化产氢活性,其产氢速率最高可到6892.7 μmol·g-1·h-1,分别为g-C3N4 (150 μmol·g-1·h-1)、15%NiS/g-C3N4 (914.5 μmol·g-1·h-1)和15%Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1)的46.1、7.5和4.4倍。这主要归因于Ni2P-NiS相比Ni2P和NiS单体具有更好的载流子转移能力,其与g-C3N4形成的肖特基势垒能有效促进光生载流子在二者界面上的分离,同时Ni2P-NiS能进一步降低析氢过电势,进而显著增强了表面析氢反应动力学。本研究为开发稳定、高效的非贵金属产氢助剂提供了实验基础。  相似文献   
994.
沈荣晨  郝磊  陈晴  郑巧清  张鹏  李鑫 《物理化学学报》2022,38(7):2110014-41
随着化石燃料使用的增加和温室气体排放量持续上升,20世纪以来气温上升得更快。开发环境友好型能源取代传统化石燃料是当务之急。氢能源作为一种清洁、高效的能源,被认为是最有希望取代传统化石燃料的能源。光催化水分解水产氢作为为一种环保型技术被认为是最有前景的氢能生产方法。提高光生电子-空穴对分离效率是构建高效光催化剂的关键。然而,利用高度分散的助催化剂构建高效、稳定的产氢光催化剂仍然是一个挑战。本文首次成功地采用一步原位高温磷化法制备了高度分散的非贵金属三金属过度金属磷化Co0.2Ni1.6Fe0.2P助催化剂(PCNS-CoNiFeP)掺杂P的石墨相氮化碳纳米片(PCNS)。有趣的是,PCNS-CoNiFeP与传统氢氧前驱体磷化法制备的CoNiFeP相比,没有聚集性,分散性高。X射线衍射(XRD)、X射线光电子能谱(XPS)、元素映射图像和高分辨率透射电镜(HRTEM)结果表明,PCNS-CoNiFeP已成功合成。紫外-可见吸收光谱结果表明,PCNS-CoNiFeP在200–800 nm波长范围内较PCNS略有增加。光致发光光谱、电化学阻抗谱(EIS)和光电流分析结果表明,CoNiFeP助催化剂能有效促进光生电子-空穴对的分离,加速载流子的迁移。线性扫描伏安法(LSV)结果还表明,负载CoNiFeP助催化剂可大大降低CNS的过电位。结果表明,以三乙醇胺溶液为牺牲剂的PCNS-CoNiFeP最大产氢速率为1200 μmol·h-1·g-1,是纯CNS-Pt (320 μmol·h-1·g-1)的4倍。在420 nm处的表观量子效率为1.4%。PCNS-CoNiFeP在光催化反应中也表现出良好的稳定性。透射电镜结果表明,6–8 nm的CoNiFeP高度分散在PCNS表面。高度分散的CoNiFeP比聚集的CoNiFeP具有更好的电荷分离能力和更高的电催化析氢活性。由此可见,聚合的CoNiFeP-PCNs (300 μmol·h-1·g-1)的产氢速率远低于PCNS-CoNiFeP。此外,CNS的P掺杂可以改善其电导率和电荷传输。  相似文献   
995.
纳米片与空心球上之间的合理界面调控是开发高效太阳能制氢光催化剂的潜在策略。在各类光催化材料中,金属硫化物由于具有相对较窄的带隙和优越的可见光响应能力而被广泛研究。ZnIn2S4是一种层状的三元过渡金属半导体光催化剂,其带隙可控(约2.4 eV)。在众多金属硫化物光催化剂中,ZnIn2S4引起了广泛兴趣。然而,单纯的ZnIn2S4光催化活性仍然相对较差,主要是因为光生载流子的复合率较高、迁移速率较慢。在半导体光催化剂上负载助催化剂是提升光催化剂性能的一种有效方法,因为它不仅可以加速光生电子和空穴的分离,而且还可以降低质子还原反应的活化能。作为一种三元过渡金属硫化物,NiCo2S4表现出较高的导电性、较低的电负性、丰富的氧化还原特性以及优越的电催化活性。这些特性表明,NiCo2S4可以作为光催化制氢的助催化剂,以加速电荷分离和转移。此外,NiCo2S4和ZnIn2S4都属于三元尖晶石的晶体结构,这可能有助于构建具有紧密界面接触的NiCo2S4/ZnIn2S4复合物,从而提高光催化性能。本文中,将超薄ZnIn2S4纳米片原位生长到非贵金属助催化剂NiCo2S4空心球上,形成具有强耦合界面和可见光吸收的NiCo2S4@ZnIn2S4分级空心异质结构光催化剂。最优NiCo2S4@ZnIn2S4复合样品(NiCo2S4含量:ca. 3.1%)的析氢速率高达78 μmol·h-1,约是纳米片组装ZnIn2S4光催化剂析氢速率的9倍、约是1% (w, 质量分数)Pt/ZnIn2S4样品析氢速率的3倍。此外,该复合光催化剂在反应中表现出良好的稳定性。荧光和电化学测试结果表明,NiCo2S4空心球是一种有效的助催化剂,可促进光生载流子的分离和传输,并降低析氢反应的活化能。最后,提出了NiCo2S4@ZnIn2S4光催化析氢的可能反应机理。在NiCo2S4@ZnIn2S4复合光催化剂中,具有高导电性的NiCo2S4助催化剂可快速接受ZnIn2S4上的光生电子,用以还原质子生成氢气,而电子牺牲剂TEOA捕获光生空穴,进而完成光催化氧化还原循环。该研究有望为基于纳米片为次级结构的分级空心异质结光催化剂的设计合成及其光催化制氢研究提供一定的指导。  相似文献   
996.
可持续能源的迅速发展,使绿色清洁的氢能源成为热点。质子交换膜(PEM)水电解是一项很有前途的技术,可高效生产高纯度氢气。IrO_(2)作为质子交换膜(PEM)水电解槽阳极氧析出反应(OER)的商用电催化剂,既能在强酸性、高强度腐蚀条件下保持稳定,又表现出优异的催化性能。然而,由于Ir的稀缺性和昂贵的价格,提高Ir基催化剂的OER活性,开发低Ir催化剂就显得至关重要。对其反应机理的认知是当前的研究热点之一,也是设计优异的OER催化剂的关键所在。因此,首先从OER机理出发,对目前被广泛认可的吸附物逸出机理(AEM)和晶格氧逸出机理(LOER)两种反应机理进行了研究。随后,根据所提出的这两种机理,介绍了OER催化剂设计的基本准则,即调控Ir基催化剂的电子结构,改善反应中间物种在催化活性位点上的吸附能,从而提高OER催化活性。并从催化剂的结构设计、形貌控制、载体材料3个方面简单概述了最近OER催化剂的研究进展。最后,在已有研究的基础上,提出了目前OER催化剂面临的困难与挑战,这为以后相关的研究指明了方向。  相似文献   
997.
获得高性能聚烯烃材料是化学家们不断的追求。烯烃聚合催化剂的结构对其催化性能有重要影响,而聚烯烃的改性则能够改善聚合物实际应用中表面形貌、本体性能中存在的缺陷,如通过改性可增加聚合物韧性、降低聚合物表面的摩擦系数或提升表面能等。 本文系统总结了金属烯烃聚合催化剂研究进展,包括Ziegler-Natta催化剂、茂金属催化剂、非茂金属催化剂的结构及调控策略,探讨了位阻效应、双金属协同效应以及其他效应对催化效果的影响。  相似文献   
998.
析氧反应是金属-空气电池和电解水制氢等电化学系统中关键的反应,研究其高效稳定非贵金属电催化剂至关重要。本文以金属有机骨架化合物(MOF)作为前驱体,通过高温煅烧制备了具有多壳层中空结构的镍钴双金属磷化物(NiCo-P)。这种独特的结构有利于电解液的渗透,能够提供丰富的暴露活性位点和快速传质路径,同时,镍钴双金属具有协同作用促进电化学性能。结果表明,n(Ni)∶n(Co)=1∶10制备的NiCo-P-0.1催化剂在1.0 mol/L KOH电解液中表现出良好的催化活性和稳定性,在10 mA/cm^(2)电流密度的过电势为329 mV,具有良好的应用前景。本工作为高活性和高稳定性的电催化析氧催化剂的制备提供了一种全新途径。  相似文献   
999.
燃料电池的阳极抗中毒研究是重要课题,探索具有超高质量活性和抗CO毒化的阳极催化剂具有显著的科学意义和应用价值。本文成功制备了Ir原子级别分散在N掺杂碳的载体上的新催化剂,并且发现该Ir-N-C对甲酸具有良好的电催化氧化性能,其质量比活性为商业Pd/C的48倍。组装了燃料电池单电池进行测试,结果显示,Ir-N-C催化剂在单电池中的质量比功率密度高达281 mW/mg,较商业Pd/C催化剂提升了3倍。同时,Ir-N-C对CO毒化的耐受性大大增强,经过14000 s的长期测试后,其活性仅衰减68%,优于商业Pd/C催化剂(衰减85%)。并且,该催化剂能够简单有效的大批量制备,为单原子催化剂的大批量制备提供了新思路。  相似文献   
1000.
近年来,催化CO2加氢合成甲醇被视为有望解决温室效应和燃料枯竭的有效途径。目前,铜基催化剂因具有较高的反应活性被广泛应用于工业生产。然而,竞争逆水煤气变换反应产生的CO导致甲醇选择性较低,同时副产物水引起Cu发生不可逆烧结,进而降低甲醇产率。众所周知,CO能够调整分子的表面竞争吸附和活性位的氧化还原行为,本工作拟向原料气中掺入具有还原性的CO以抑制逆水煤气变换反应和防止表面氧化中毒。另一方面,通常认为铜基催化的CO2加氢制甲醇是结构敏感性反应,不同的前驱体能够显著影响催化剂结构和形貌,进而影响催化活性。因此,我们首先通过共沉淀法和蒸氨法制备了含有类水滑石前驱体(CHT-CZA)和复合物前驱体(CNP-CZA)结构的Cu/ZnO/Al2O3催化剂。随后,为探究CO掺杂后反应机理,在250 ℃,5 MPa的反应条件下,含有不同比例CO的原料气中(CO2:CO:H2:N2 = x:(24.5 - x):72.5:3)评价两种催化剂对甲醇合成的性能。评价结果显示两种催化剂反应性能趋势相同,随着CO含量增加,CO2转化率和STYH2O不断降低,STYMeOH逐渐增加。X射线光谱(XPS)显示随CO含量增加,催化剂表面还原性Cu比例增加。评价和表征结果说明CO引入抑制了逆水煤气变换反应的发生,通过还原被H2O氧化的活性Cu表面,促使更多的活性Cu位点暴露参与甲醇合成。另一方面,透射电镜(TEM)显示掺杂的CO会过度还原而引起颗粒团聚,导致催化剂逐渐失活。相比之下,含有水滑石前驱体的催化剂在任何气氛下均表现出更加优越的反应性能和长周期稳定性。这可归因于类水滑石前驱体独特的片层结构通过结构限域作用有效避免了因CO过度还原而导致的金属颗粒团聚,从而减少活性位点损失。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号