首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过一种结合了CO辅助合成Pt_3Ni纳米立方粒子和单原子层Cu壳欠电位沉积再置换为Pd的方法,成功制备出了具有单原子层Pd壳和Pt_3Ni纳米立方粒子核结构的Pt_3Ni@Pd/C催化剂。电感耦合等离子体元素分析、X射线衍射和透射电子显微镜法被用于研究表征此种Pt_3Ni@Pd/C催化剂,结果显示大部分Pt_3Ni纳米粒子的表面都由{100}族的晶面所构成。而且在这些{100}族的晶面上,单原子层Pd壳通过电沉积的外延生长,也获得了{100}族的晶面。本文进一步对Pt_3Ni@Pd/C作为甲酸氧化电催化剂的性能进行了研究,并与商业Pd/C和原Pt_3Ni/C催化剂进行了比较。结果显示,由于Pt_3Ni@Pd/C的单原子层Pd壳的结构和所暴露出的Pd{100}族的晶面,Pt_3Ni@Pd/C催化剂具有优异的甲酸氧化电催化性能。与原Pt_3Ni/C催化剂相比较,Pt_3Ni@Pd/C催化剂的贵金属质量比活性提高到了7.5倍。此外,与商业Pd/C催化剂相比,Pt_3Ni@Pd/C催化剂的比表面活性和Pd质量比活性也分别提高到了2.5和8.3倍。  相似文献   

2.
CO/H_2燃料气的质子交换膜燃料电池性能研究   总被引:4,自引:0,他引:4  
质子交换膜燃料电池的燃料气多来自于重整气 ,而重整气中所含的CO对电催化剂有毒化作用 ,使电池性能大幅度衰减 .本文就CO对燃料电池的性能影响作了系统的实验研究 ,结果证明 :随CO通入时间的延长 ,电池性能剧烈衰减 ,然后趋于稳定 ,但仍有振荡 ;同时CO浓度越高 ,中毒现象越严重 ;温度升高 ,CO的毒化作用减轻 ;CO在催化剂表面的吸附是可逆的 ;PtRu/C较Pt/C的抗CO中毒能力强 .本文所制的PtRu/C催化剂的抗CO性能已与商品催化剂接近  相似文献   

3.
通过一种结合了CO辅助合成Pt3Ni纳米立方粒子和单原子层Cu壳欠电位沉积再置换为Pd的方法,成功制备出了具有单原子层Pd壳和Pt3Ni纳米立方粒子核结构的Pt3Ni@Pd/C催化剂。电感耦合等离子体元素分析、X射线衍射和透射电子显微镜法被用于研究表征此种Pt3Ni@Pd/C催化剂,结果显示大部分Pt3Ni纳米粒子的表面都由{100}族的晶面所构成。而且在这些{100}族的晶面上,单原子层Pd壳通过电沉积的外延生长,也获得了{100}族的晶面。本文进一步对Pt3Ni@Pd/C作为甲酸氧化电催化剂的性能进行了研究,并与商业Pd/C和原Pt3Ni/C催化剂进行了比较。结果显示,由于Pt3Ni@Pd/C的单原子层Pd壳的结构和所暴露出的Pd{100}族的晶面,Pt3Ni@Pd/C催化剂具有优异的甲酸氧化电催化性能。与原Pt3Ni/C催化剂相比较,Pt3Ni@Pd/C催化剂的贵金属质量比活性提高到了7.5倍。此外,与商业Pd/C催化剂相比,Pt3Ni@Pd/C催化剂的比表面活性和Pd质量比活性也分别提高到了2.5和8.3倍。  相似文献   

4.
直接乙醇燃料电池作为便携式移动电源受到越来越多的关注,如乙醇能量密度高、可再生、无毒、清洁、便于储存和运输等优点。然而,乙醇燃料电池的研究也面临一些严重问题,其中C-C键断裂是最为挑战的问题之一。近年来有报道表明,乙醇的完全氧化(包含C-C键断裂过程)并没有显示出燃料电池效率的增加,相反乙醇不完全氧化的催化剂会导致更明显的催化电流增加。同时金属Bi掺杂会对催化剂产生电子效应和几何效应并有效增加碱性体系中催化剂的活性位中心和抗CO中毒能力。因此,本工作将铋掺杂在铂和钯中制备出Pt Bi/C和Pd Bi/C作为乙醇燃料电池催化剂,同时研究Bi掺杂催化剂对乙醇燃料电池性能以及乙醇的不完全氧化产物醋酸盐的影响,为乙醇燃料电池电-化学品联产提供一定的依据。以硼氢化钠为还原剂,Vulcan XC-72 (Cabot)导电炭为载体制备了Pt/C、Pd/C、Pt Bi/C和Pd Bi/C (20%质量比)炭载催化剂,其中Pt Bi和Pd Bi原子比均为95∶5。首先将金属前驱体溶于H2O/异丙醇溶液(50/50,体积比)中,加入Vulcan XC-72导电炭黑充分混合,然后加入硼氢化钠在常温常压下充分反应,过滤洗涤干燥备用。其次,对所制备的催化剂进行TEM、XRD、XPS、电化学以及光谱电化学进行表征和测试。电化学、光谱电化学在三电极电解池中进行,将所制备的催化剂分散在超薄多孔电极上制备成工作电极,对电极为Pt片电极,参比电极为Ag/Ag Cl电极。电解液为碱性1 mol/L KOH的乙醇溶液,在电化学工作站上进行CV、LSV扫描以及在不同电位下测试溶液的ATR-FTIR谱。最后,燃料电池测试在一个面积为5 cm2的单电池上进行,阳极为2 mol/L乙醇+3 mol/L KOH溶液,流量为2 m L/min,阴极通入氧气,并研究催化剂的构成及性能对电池性能的影响。采用硼氢化钠还原法合成Pt/C、 Pt Bi(95∶5)/C、 Pd/C和Pd Bi(95∶5)/C。Pd/C和Pd Bi/C的晶体结构呈现FCC特征,Pt/C和Pt Bi/C的晶体结构也呈现FCC特征。XRD也揭示了铋原子对Pt晶体结构的影响。在1 mol/L KOH溶液中,异位XPS和循环伏安法显示这些金属具有较高的氧化态。透射电镜显示Pd/C有一定的纳米粒子聚集,Pd Bi/C有一定的有序结构。红外光谱(ATR-FTIR)结果表明,Bi效应由于吸附能力较弱,抑制了碳酸盐的生成,增加了醋酸盐的生成。由于醋酸盐优先生成,且不被碳酸盐离子毒害,Pt Bi/C具有最佳的电化学和DEFC性能。通过在Pt和Pd掺杂金属Bi制备具有电子调控的双金属炭载Pt Bi(95∶5)/C和Pd Bi(95∶5)/C催化剂,以增强乙醇氧化反应催化氧化过程。透射电镜(TEM)和X射线光电子能谱(XPS)结果表明,Bi含量不影响Pd Bi纳米颗粒的尺寸,但会影响Pt Bi纳米颗粒的尺寸。X射线衍射分析表明,Bi掺杂改变了Pt晶体结构中的晶格参数。此外,ATR-FTIR结果表明,碳酸盐的形成受到抑制,乙酸盐产量增加。极化曲线和功率密度曲线结果表明,Pt Bi/C催化剂具有更高的功率密度,几乎是Pt/C的6倍。在线性扫描伏安实验中,Pt Bi/C具有最高的电流密度(44 m W/cm2)和最低的起始电位(-0.6 V)。在电流-时间实验中,它也具有最高的最终电流密度。因此,在Pt和Pd中掺杂铋催化剂被证明是一种很有前途的燃料电池发电和醋酸盐的联产方法。  相似文献   

5.
发展兼具高活性和高稳定性的规整非铂电化学催化剂无论对于燃料电池的推广应用还是基础研究都具有重要意义.我们将钯纳米立方体(Pd nanocubes)作为晶种,使用表面掺杂的手段制备了一种表面结构规整的钨掺杂钯纳米立方体(W-doped Pd nanocubes).通过改变合成过程中所加入羰基钨前驱体的量以调控表面钨的原子比例,继而获得了钨原子比例分别为0%,0.8%,1.2%,1.5%的纳米立方体.所制W-doped Pd nanocubes/C催化剂在碱性条件下的氧还原反应中表现出优异性能,其中1.2%W-doped Pd nanocubes/C催化剂性能最佳,在0.9 VRHE时比活性达1.18 mA cm~(-2),质量活性达0.25 A mg~(-1)Pd,分别是商业Pt/C催化剂的4.7倍和2.5倍.研究表明,随着钨的掺杂量从0%增至1.5%,钨掺杂钯纳米立方体的d带中心从-2.49 eV逐渐降至-3.08 eV.同时,光电子能谱结果表明,随着钨掺杂量的增加,钯的3d峰位向低能逐渐偏移,说明了钨掺杂导致了电荷由钨转向钯.而d带中心的下移能够将更多的反键态拉下费米能级,继而导致反应中间体的吸附减弱.因此,由钨到钯的电荷转移导致的d带中心的下移,继而引起的反应中间体对催化剂的吸附作用变弱是氧还原催化活性增强的原因.而过高的W掺杂(1.5%)导致活性的降低也可以用Sabatier规则解释.在循环测试10000圈之后,1.2%W-doped Pd nanocubes/C催化剂的质量活性仅仅减少了14.8%,而商业Pt/C催化剂减少了40%,可见其具有极佳的稳定性.而且循环测试之后的透射电镜表征显示,相比于团聚严重的商业Pt/C催化剂,1.2%W-doped Pd nanocubes/C催化剂仍然分散良好,其形貌也几乎没有发生变化.此外,该催化剂对乙醇氧化反应也表现出优异的性能.在1.0 mol L~(-1)氢氧化钾和1.0 mol L~(-1)乙醇混合溶液中,测试峰电流达6.6 A mg~(-1)Pd,是Pd nanocubes/C催化剂的2.2倍,商业Pd/C催化剂的5.1倍.这同样得益于适量钨掺杂所导致的催化剂d带中心—下移引起的含碳中间体吸附的削弱.经过1000 s的稳定性测试,1.2%W-doped Pd nanocubes/C同样表现出高于商业Pd/C催化剂的稳定性.优异的氧还原和乙醇氧化性能表明所制1.2%W-doped Pd nanocubes/C是一种极具潜力的双功能燃料电池催化剂.  相似文献   

6.
于彦存  王显  葛君杰  刘长鹏  邢巍 《应用化学》2019,36(11):1317-1322
直接甲酸燃料电池(DFAFC)阳极活性炭载Pd催化剂活性组分易聚集,分散差且存在炭载体的电腐蚀作用,造成催化活性低稳定性差。 为解决上述问题,本文通过调控炭载Pd催化剂的载体改善催化活性和稳定性。 采用低温化学氧化法制备了聚吡咯(PPy)与活性炭复合材料,在聚合过程中加入活性炭,经过高温热解聚吡咯形成复合碳载体负载Pd催化剂,并表征了热解聚吡咯碳修饰催化剂表面形貌,发现聚吡咯修饰后的催化剂载体表面氮元素以吡咯氮的形式存在,催化剂活性组分Pd纳米粒子可稳定在2.25 nm。 通过甲酸电催化氧化性能测试,结果表明,Pd单位质量比活性比Pd/C催化剂提高了2.5倍。  相似文献   

7.
用黄磷作原料,制备了具有不同Pd-P原子比的碳载Pd-P(Pd-P/C)催化剂,并且使用X射线衍射(XRD)和能量色散X射线光谱仪(EDX)等手段对制备的催化剂进行了表征,总结了P含量对Pd-P合金纳米粒子的粒径和晶体结构的影响。电化学测试结果表明,甲酸在Pd/C、Pd1P6/C 和Pd1P8/C催化剂上,氧化峰峰电位由低到高依次为Pd1P6/C ﹤Pd1P8/C﹤Pd/C,电化学稳定性顺序为Pd1P6/C >Pd1P8/C>Pd/C,Pd1P6/C 催化剂对甲酸氧化的催化性能最佳,适量的P掺杂能够增强Pd/C催化剂对甲酸氧化的电催化活性和稳定性,因此,Pd-P/C催化剂是一类具有应用前景的直接甲酸燃料电池(DFAFC)阳极催化剂。  相似文献   

8.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd1/TiO2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10–3 s–1,比有文献报道的活性最高的Pd/La-修饰Al2O3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

9.
采用两步浸渍-还原法制备了一种具有高Pt利用效率,高性能的Pt修饰的Ru/C催化剂(Ru@Pt/C).对于甲醇的阳极氧化反应,该催化剂的单位质量铂的催化活性分别为Pt/C、自制PtRu/C和商业JMPtRu/C催化剂的1.9、1.5和1.4倍;其电化学活性比表面积分别为Pt/C和自制PtRu/C的1.6和1.3倍.尤为重要的是该催化剂对甲醇氧化中间体具有很好的去除能力,其正向扫描的氧化峰的峰电流密度(If)与反向扫描氧化峰的峰电流密度(Ib)之比可高达2.4,为Pt/C催化剂的If/Ib的2.7倍,表明催化剂具有很好的抗甲醇氧化中间体毒化的能力.另外,Ru@Pt/C催化剂的稳定性也高于Pt/C、自制PtRu/C和商业JMPtRu/C催化剂的稳定性.采用X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征,Pt在Ru表面的包覆结构得到了印证.Ru@Pt/C的高铂利用效率、高性能和高抗毒能力使其有望成为一种理想的直接甲醇燃料电池电催化剂.  相似文献   

10.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd_1/TiO_2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10~(–3) s~(–1),比有文献报道的活性最高的Pd/La-修饰Al_2O_3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO_2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

11.
钯(Pd)基催化剂是直接乙醇燃料电池研究中广泛使用的催化剂,进一步提升其性能是推动燃料电池发展的重要方向。本文用一步水热法制备出四面体结构PdCo(PdCo tetrahedron,记为PdCo-TH)和少量铱(Ir)掺杂的PdCo四面体合金纳米粒子(记为PdCoIr-TH)。经TEM、ICP、XPS及CV等表征证实,PdCoIr-TH为三元合金纳米粒子,且掺杂的Ir元素倾向分布在催化剂表层。相比于商业Pd/C催化剂,PdCo-TH/C和PdCoIr-TH/C对乙醇电氧化的催化性能显著增强。研究结果表明,Pd9Co1Ir0.1-TH/C在低电位(< -0.25 V)下具有最高的乙醇电氧化活性和稳定性。Ir掺杂不仅提高了催化剂抗CO毒化的能力还有利于乙醇起始氧化电位负移。同时,随着Ir含量的增加,所制备的纳米催化剂的乙醇电氧化C1产物选择性也随之升高。针对不同组成催化剂反应性的差异,本文认为Co与Ir位点上容易产生OHad物种,这将有利于活性Pd位点上乙醇电氧化中间反应物种的有效转化。除了以上的各位点间的协同效应,三元合金的形成,进一步调控了Pd的d带电子结构,从而促进了催化剂反应性的改变。  相似文献   

12.
郭琦  李焕芝  季云  陆天虹 《应用化学》2013,30(2):191-195
直接甲酸燃料电池的两大问题是Pd催化剂对甲酸氧化的电催化稳定性不好和Pd能催化甲酸分解。研究发现,当Pd/C在偏钒酸钠溶液中浸泡后能吸附上VO3-,吸附上VO3-的Pd/C催化剂对甲酸分解的催化性能会大大降低,由甲酸分解产生的CO的量也大大降低,使Pd/C催化剂被CO毒化的几率也大大降低,因此,在偏钒酸钠溶液中浸泡后的Pd/C催化剂对甲酸氧化的峰电流密度要比没有浸泡的Pd/C催化剂高13%左右。计时电流曲线的测量表明,6000 s时在偏钒酸钠溶液中浸泡后的Pd/C催化剂对甲酸氧化的峰电流密度要比没有浸泡的Pd/C催化剂高42%左右。结果证明,在偏钒酸钠溶液中浸泡能提高Pd/C催化剂对甲酸氧化的电催化活性,特别是电催化稳定性。  相似文献   

13.
质子交换膜燃料电池Pd修饰Pt/C催化剂的电催化性能   总被引:3,自引:1,他引:2  
吕海峰  程年才  木士春  潘牧 《化学学报》2009,67(14):1680-1684
通过对Pt催化剂表面进行Pd修饰提高质子交换膜燃料电池阴极催化剂的氧还原反应(ORR)活性. 采用乙二醇还原法制备了不同比例的Pd修饰Pt/C催化剂. 透射电镜(TEM)和X射线衍射(XRD)测试结果表明, 制备的催化剂贵金属颗粒粒径主要分布在1.75~2.50 nm之间, 并均匀地分散在碳载体表面. 循环伏安方法(CV)研究表明Pd修饰Pt/C催化剂的电化学活性面积低于传统的Pt/C催化剂. 但通过旋转圆盘电极(RDE)测试研究发现, 制备的催化剂具有比传统Pt/C催化剂高的ORR活性.  相似文献   

14.
研究了不同Pd和Pt原子比的炭载Pd-Pt(Pd-Pt/C)催化剂对氧还原的电催化性能和抗甲醇性能。 发现当Pd和Pt原子比从20∶0增加至17∶3时,Pd-Pt/C催化剂对氧还原的电催化活性逐步增加,而对甲醇氧化均元电催化活性,表明有很好的抗甲醇能力。 但当Pd和Pt原子比增加至16∶4时,虽然对氧还原的电催化活性还在增加,但抗甲醇能力下降。 所以当Pd-Pt原子比为17∶3时,Pd-Pt/C有很好的对氧还原的电催化性能和抗甲醇能力,可以用作直接甲醇燃料电池(DMFC)的阴极催化剂。  相似文献   

15.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳载Pt催化剂(Pt/Co-PPy-C),并将其作为阴极催化剂,组装单电池。考察了电池运行温度和氢气/空气计量比对单电池性能的影响,并与商业Pt/C催化剂进行了耐久性实验比较。 结果表明,运行温度为70 ℃,氢气与空气的计量比为1.2:2.5时单电池性能最佳。600 mA/cm2恒电流稳定运行150 h耐久性测试中,以Pt/Co-PPy-C为阴极催化剂的单电池平均电压衰退率为0.119 mV/h,是商业Pt/C催化剂的26%。耐久性测试前后,单电池的阴极电荷传递阻抗为7.176和8.767 Ω,均比商业Pt/C催化剂阻抗小;Pt颗粒粒径从2.46 nm增长到3.18 nm,均小于商业Pt/C催化剂的粒径。这表明,以Pt/Co-PPy-C催化剂为阴极催化剂制备的单电池性能优良,在质子交换膜燃料电池中有广泛的应用前景。  相似文献   

16.
刘佳佳  邬冰  高颖 《化学学报》2012,70(16):1743-1747
通过低温氧化法在活性碳表面修饰聚吡咯(PPy-C), 并以PPy-C为载体制备了纳米Pd催化剂(Pd/PPy-C). 采用X射线衍射、扫描电镜、透射电镜等手段对载体PPy-C及催化剂Pd/PPy-C进行了表征, 电化学测试结果表明, Pd/PPy-C催化剂电极不但能够增强催化剂对甲酸催化氧化的活性, 而且还能够大幅度提高催化剂的稳定性, 因此以PPy-C为载体的Pd/PPy-C催化剂是一类具有潜在应用前景的直接甲酸燃料电池阳极催化剂. 通过分析电化学比表面随循环伏安次数的变化及多电势阶跃实验结果表明, 催化剂电极活性衰减的主要原因是载体被氧化及电极表面积累强吸附物种的结果.  相似文献   

17.
以NaBH4为还原剂,将K2PtCl6和AgNO3前体进行共还原制备了一系列具有不同组成的碳载PtmAg/C合金催化剂(m为Pt/Ag原子比,m为0.05~1.0),在酸性介质中考察了该系列催化剂对甲醇氧化反应的电催化性能。 与单组分Pt/C催化剂相比,系列PtmAg/C催化剂呈现出较高的催化氧化甲醇的活性与抗CO毒化能力,而且该催化剂的性能与其组成密切相关。 随m值增加,PtmAg/C催化剂对甲醇氧化反应的质量比催化活性(MSA)、本征催化活性(IA)与稳定性均逐步增加,当m=0.5时催化活性达到最高,其MSA和IA分别是Pt/C催化剂的5.1和4.8倍。  相似文献   

18.
《化学学报》2012,70(16)
通过低温氧化法在活性碳表面修饰聚吡咯(PPy-C),并以PPy-C为载体制备了纳米Pd催化剂(Pd/PPy-C).采用X射线衍射、扫描电镜、透射电镜等手段对载体PPy-C及催化剂Pd/PPy-C进行了表征,电化学测试结果表明,Pd/PPy-C催化剂电极不但能够增强催化剂对甲酸催化氧化的活性,而且还能够大幅度提高催化剂的稳定性,因此以PPy-C为载体的Pd/PPy-C催化剂是一类具有潜在应用前景的直接甲酸燃料电池阳极催化剂.通过分析电化学比表面随循环伏安次数的变化及多电势阶跃实验结果表明,催化剂电极活性衰减的主要原因是载体被氧化及电极表面积累强吸附物种的结果.  相似文献   

19.
高性能的电催化剂对直接燃料电池的商业化应用有着至关重要的作用,目前的阳极材料还存在活性低、易中毒、成本高等问题。本研究以层状双氢氧化物(layered double hydroxides, LDHs)为载体通过浸渍法制备了新型纳米钯(Pd)催化剂,并通过X射线衍射仪、扫描电子显微镜、电感耦合等离子体质谱仪、能谱仪、透射电子显微镜、循环伏安法测试、计时电流测试和电化学阻抗等方法对催化剂的结构和电催化性能进行了研究。结果表明,新制备的Pd/Mg-Al-LDHs仍然保持着LDHs的层状结构,循环伏安测试表明在碱性条件下,Pd/Mg-Al-LDHs比Pd/C有更好的电催化乙醇活性和抗中间产物中毒性能,且乙醇浓度、扫描速率和温度等因素对峰电流有着直接影响。计时电流测试表明在电催化乙醇的过程中Pd/Mg-Al-LDHs比Pd/C拥有更高的电催化活性和稳定性。电化学阻抗测试表明,Pd插层可显著改善Mg-Al-LDHs的导电性,并降低电催化过程中电荷转移阻力。  相似文献   

20.
通过水浴浸泡制备了磷钨酸(PWA)修饰的活性炭(PWA/C),再通过液相还原法将Pd沉积于PWA/C复合载体上制备了Pd-PWA/C催化剂. 采用X射线能量色散(EDS)谱、X射线衍射(XRD)谱、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对产物进行表征. 结果表明,磷钨酸修饰活性炭不仅能有效降低Pd纳米粒子的粒径,而且与Pd纳米粒子间发生了强烈作用. 电化学测试结果显示,Pd-PWA/C催化剂对甲酸氧化的电催化活性和稳定性均远优于Pd/C催化剂,这是由于Pd与PWA/C间的强烈作用既能有效降低CO在催化剂上的吸附强度和吸附量,又能降低甲酸分解的速率,从而减弱CO的毒化作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号