首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
析氧反应(OER)是能量转换过程中重要的半反应,开发高效、稳定、低成本的析氧反应催化剂具有重要的意义.本文报道了 一种简单的原位可控生长的方法,在铜双金属氢氧化物纳米片表面原位生长石墨炔薄膜,形成了新型石墨炔/金属氢氧化物异质结界面结构,并通过改变化学组成的方法,实现对其电催化OER活性和稳定性的有效提升.研究结果显示...  相似文献   

2.
利用可再生电力驱动水分解提供了一种绿色和可持续的方式来生产氢气(H2),而提高水分解效率的关键是开发高效的电催化剂.作为水分解反应的阴极,析氢反应(HER)仅需要两电子转移,目前的研究较为成熟.相比之下,析氧反应(OER)因涉及四个电子的转移,比HER过程更复杂.在众多析氧催化剂中,镍铁(NiFe)基电催化剂是碱性电解液体系中最佳的OER催化剂之一,然而其在中性及近中性体系中活性降低较多,从而限制了其在中性的海水电解及二氧化碳还原体系中的应用.目前,造成NiFe基催化剂在中性体系中性能较差的具体机制尚不清晰.文献报道,随着体系pH逐渐降低,NiFe基催化剂析氧性能也会随之变差;深入研究发现,碱性体系中更易于形成高价的Ni,Fe物质,但其是否对催化剂在水分解过程中有影响仍有待进一步研究.本文将电化学测试与原位光谱技术相结合,对镍铁层状双金属氢氧化物(NiFe LDH)在不同pH电解液体系中的析氧反应机理进行深入研究.电化学测试结果表明,随着pH值逐渐降低,NiFe LDH催化剂的析氧性能逐渐变差.原位表面增强拉曼光谱结果表明,不同pH电解液体系中NiOOH和“活性氧...  相似文献   

3.
氧还原反应(ORR)是金属空气电池以及质子交换膜燃料电池(PEMFCs)系统重要的阴极反应,研究具有高活性与高稳定性的非贵金属催化剂具有重要意义。本研究使用了一种具有分级孔结构的MIL-101-(Al-Fe)作为金属前驱体模板,成功制备出具有分级多孔结构的Fe-N-C催化剂。电化学测试结果表明,在0.1 mol/L KOH电解液中,Fe-N-C-MIL-900催化剂表现出最优的氧还原性能(半波电位0.905 V以及5000圈CV测试后半波电位仅下降5 mV),远高于纯碳基N-C-MIL-900催化剂(0.845 V)。通过旋转环盘电极测试发现,Fe-N-C-MIL-900催化剂ORR电子转移数为3.98,H2O2产率低于3%,表现出明显的4电子ORR路径。这一工作为制备具有高ORR活性的Fe-N-C催化剂提供了一种新的途径。  相似文献   

4.
析氧反应(OER)是电解水制氢的关键步骤,开发高效、稳定、廉价的OER电催化剂是目前该领域的研究热点.碱性电解液中的OER电催化剂成分以Mn、Fe、Co、Ni等为主,其中单一组分的Fe基化合物催化活性不高,但碱性电解液中的痕量铁杂质极易掺入Ni、Co等非Fe基材料的结构中,极大影响其OER催化性能,即现有大部分非Fe基化合物无法回避Fe的影响.为探究Fe基多金属电催化剂的活性规律,本文以结构清晰、组分可控的Fe基金属有机框架材料为基底,通过掺入Mn、Co、Ni等元素构建双元金属化合物Fe2M-MIL-88B(M=Mn,Co,Ni),并围绕上述Fe基双金属电催化剂的构效关系展开研究.扫描电镜、透射电镜、X射线衍射光谱、红外光谱等表征结果表明,所制备的Fe基双金属材料均为具有MIL-88B构型的纳米棒,其特征三核金属簇Fe3O中的一个铁原子被第二元金属所替代,从而形成相应的三核混合金属簇Fe2MO.上述Fe基双金属催化剂的析氧催化活性顺序为:Fe2Ni>Fe2Co>Fe2Mn>Fe(0.1 M KOH电解液).其中,Fe2Ni-MIL-88B电催化剂在10 mA cm-2析氧电流对应的过电位仅需307 mV,明显低于OER基准电催化剂20 wt%Ir/C(376 mV).结合材料的元素组成、电化学活性比表面积(ECSA)及金属价态分析发现,第二元金属的引入会在不同程度上降低Fe的价态,其中Ni的影响程度最大,Co次之,Mn的影响最小.借助分子轨道理论对上述实验现象进行了解释.处于低自旋态的Ni2+与邻近桥氧O2-之间存在电子排斥作用,因此部分电子将从Ni2+经O2-转移至高自旋态的Fe3+,从而在Ni2+和Fe3+之间形成了较强的电子耦合作用.Co2+具有和Ni2+相似的构型,但影响稍小.而Mn2+和Fe3+同为高自旋态,对Fe3+的电子结构影响最小,导致活性改善程度最低.密度泛函理论计算得到的自旋态变化情况印证了上述推测.该系列Fe基双金属材料的催化性能主要受金属活性位点的电子结构影响,Fe与邻近金属间形成的电子耦合作用修饰了金属活性位点的电子结构,从而提高了材料的OER本征催化活性.  相似文献   

5.
析氧反应(OER)在电化学能源存储与转化技术(例如,电解水与金属-空气电池)中扮演着至关重要的角色.OER涉及四个电子的连续转移,动力学较为缓慢,因此需要较高的过电位来驱动反应进行,这严重限制了其在电化学储能和转换系统中的应用.IrO2和RuO2等贵金属基催化剂资源稀缺、价格高昂,因此,开发高活性、高稳定性及低成本的OER电催化剂显得尤为重要,并且极具挑战.杂原子掺杂是一种有效提升过渡金属化合物OER电催化剂活性的策略,但是当前对其本征活性位点的识别及活性提升机制的研究仍然不足.本文提出了一种阳离子掺杂策略,通过引入金属阳离子调控多金属组分的电子结构,优化OER中间体吸附能,进而提升OER活性.通过简单的一步热解硫化钴镍双金属有机框架材料前驱体,成功制备了Ni掺杂CoS/氮掺杂介孔碳(Ni-CoS/NC)复合结构电催化剂;并采用循环伏安法研究了其电化学行为与OER性能,结合谱学研究结果与密度泛函理论(DFT)计算,从原子层面揭示了OER条件下真实活性位点及掺杂型电催化剂的活性提升机制.电化学研究结果表明,所制备Ni-CoS/NC催化剂在1.0...  相似文献   

6.
开发碱性体系的高效低成本析氧电催化剂是由可再生能源转化制氢的关键。本研究通过在泡沫Ni基底上原位电化学沉积的方法制备了花瓣状NiFeO_xH_y和NiFeO_xH_y/rGO复合催化剂用于析氧反应。花瓣状的结构不仅明显提高了催化剂的比表面积,而且暴露了更多的层状边缘和缺陷,进而增加了催化剂的活性中心。还原氧化石墨烯的加入进一步提升了催化剂的电导和析氧电催化性能,通过优化NiFeO_xH_y/r GO在1 mol/L KOH溶液中的析氧性能为:过电位200 mV(10 mA/cm~2)、Tafel斜率29.11 mV/decade,并且保持了较好的稳定性。  相似文献   

7.
《电化学》2017,(2)
从环境兼容角度来设计应用于氧析出反应的电催化剂是否有效、耐用和廉价对能源转化过程至关重要.本文报告了一种快速制备低成本、原料丰富的金属催化剂制备方法.通过一步电化学沉积法在钛金属基材上制备了铁、镍、钴金属及其钴镍、钴铁二元金属纳米颗粒.采用场发射电子显微镜(FE-SEM)、能量散射X-射线能谱(EDX)、X-射线衍射光谱(XRD)、X-射线光电子能谱(XPS)和电化学技术对制备的不同纳米颗粒进行了表征.电化学结果显示,在合成的五种钛基金属纳米催化剂中,钛基上沉积钴金属纳米颗粒(Ti/Co)电极在0.l mol·L~(-1)氢氧化钾溶液中氧析出反应的电催化活性最好,0.70 V(相对于银/氯化银电极)的电流密度为10.0 mA·cm~(-2).经优化后Ti/Co电极的过电位(η)很小,当电流密度为10.0 mA·cm~(-2)时η为0.43 V,质量活性高达105.7 A·g~(-1),逆转频率(TOF)值为1.63×10~(-3) s~(-1),这些与当前最好的碳载铂(Pt/C)和氧化钌(RuO_2)电催化剂的性能相当.此外,通过计时电位技术对优化后Ti/Co电极的耐久性进行了测试,发现该电极在碱性溶液中氧析出反应的稳定性良好.本工作制备的钛金属基材上电化学沉积金属钴纳米颗粒具有高催化活性、高稳定性、原料来源丰富、廉价且易于大规模生产,在工业化水分解领域具有潜在的应用前景.  相似文献   

8.
开发高活性、低成本的析氢反应和析氧反应电催化剂对于能源的可持续发展至关重要。金属有机框架衍生的纳米材料已经成为一类非常有前景的非贵金属双功能电催化剂,但是目前对镍基金属有机框架衍生的双功能电催化剂的深入研究并不全面,其催化活性和稳定性还有待进一步提高。本文制备了一种棒状多孔碳负载镍纳米颗粒的新型电催化剂,并将其用作电催化析氢和析氧反应。实验研究结果表明该类电催化剂表现出优异的析氢和析氧反应活性和长期稳定性,在10 mA·cm~(-2)的电流密度下,析氢反应和析氧反应的过电位分别为120和350 mV。我们认为:材料可控的纳米结构和均匀分布的活性位点共同提升了复合材料的电催化性能。  相似文献   

9.
采用镍氨和钴氨为电解液电沉积金属钴镍,提高材料的比表面积和导电性,再通过Galvanic反应快速合成了金属钴镍复合钴镍铁氢氧化物(CoNi/CoNiFe H)催化剂用于OER催化,采用XRD、SEM、XPS对材料的结构、形貌进行了表征,并研究了其电化学性能。结果表明:在1 M KOH溶液中,电流密度为10 mA·cm~(-2)时,过电位仅有250 mV,Tafel斜率为29 mV·dec~(-1),且具有良好的稳定性。这为制备廉价的多金属复合材料用于高效OER催化提供了新的方法。  相似文献   

10.
采用两步化学还原法制备了Co@Pt/C电催化剂, 并在还原气氛下对催化剂进行热处理. 通过高分辨透射电镜(HR-TEM)和X射线光电子能谱(XPS)等技术对催化剂的微观结构和形貌进行表征. 结果表明: 形成的Co@Pt/C催化剂具有核壳结构, 金属纳米颗粒均匀负载于碳上, 其粒径分布范围较窄; 热处理对催化剂的结构和形貌有较大影响. 利用循环伏安(CV)法和线性伏安扫描(LSV)法表征催化剂的电化学活性、氧还原反应(ORR)动力学特性及耐久性. 制备的Co@Pt/C催化剂在电解质溶液中表现出良好的电化学性能, 核壳结构的形成有助于提高Pt 的利用率. 动力学性能测试表明催化剂的ORR反应以四电子路线进行. 相比于合金催化剂,核壳结构催化剂的耐久性和稳定性有很大程度的改善.  相似文献   

11.
通过研磨法制备了一系列不同金属负载的MCM-41催化剂,考察了单一金属及双金属负载催化剂对甲醛与异丁烯Prins缩合制备3-甲基-3-丁烯-1-醇(MBO)反应性能的影响,筛选出最佳的双金属Cu-Al负载催化剂.利用XRD、 NH_3-TPD、 N_2吸附、 UV-vis等表征手段对双金属改性前后催化剂的结构和酸性进行了深入分析,探究了其物质的量比例和协同作用对Prins反应性能的影响.结果表明,在温度200℃, n(异丁烯)/n(甲醛)=7,反应4 h的适宜条件下, Cu-Al(1∶1)/MCM-41对甲醛的转化率为100%, MBO产率高达98%,高于单一金属负载的催化剂. NH_3-TPD表征发现Cu-Al双金属负载催化剂具有适当的酸量和适宜的酸强度,可以提高MBO的产率.Cu-Al(1∶1)/MCM-41催化剂具有一定的再生性能,连续3次再生后催化剂的比表面积和孔容明显降低,催化剂活性中心聚集导致酸量尤其是中强酸和强酸量减少是反应活性下降的主要原因.  相似文献   

12.
析氧反应(OER)是电解水制氢的关键步骤,开发高效、稳定、廉价的OER电催化剂是目前该领域的研究热点.碱性电解液中的OER电催化剂成分以Mn、Fe、Co、Ni等为主,其中单一组分的Fe基化合物催化活性不高,但碱性电解液中的痕量铁杂质极易掺入Ni、Co等非Fe基材料的结构中,极大影响其OER催化性能,即现有大部分非Fe基化合物无法回避Fe的影响.为探究Fe基多金属电催化剂的活性规律,本文以结构清晰、组分可控的Fe基金属有机框架材料为基底,通过掺入Mn、Co、Ni等元素构建双元金属化合物Fe_2M-MIL-88B(M=Mn, Co, Ni),并围绕上述Fe基双金属电催化剂的构效关系展开研究.扫描电镜、透射电镜、X射线衍射光谱、红外光谱等表征结果表明,所制备的Fe基双金属材料均为具有MIL-88B构型的纳米棒,其特征三核金属簇Fe_3O中的一个铁原子被第二元金属所替代,从而形成相应的三核混合金属簇Fe_2MO.上述Fe基双金属催化剂的析氧催化活性顺序为:Fe_2Ni Fe_2Co Fe_2Mn Fe (0.1 M KOH电解液).其中, Fe_2Ni-MIL-88B电催化剂在10 mA cm~(2-)析氧电流对应的过电位仅需307 mV,明显低于OER基准电催化剂20 wt%Ir/C(376 mV).结合材料的元素组成、电化学活性比表面积(ECSA)及金属价态分析发现,第二元金属的引入会在不同程度上降低Fe的价态,其中Ni的影响程度最大, Co次之, Mn的影响最小.借助分子轨道理论对上述实验现象进行了解释.处于低自旋态的Ni~(2+)与邻近桥氧O~(2-)之间存在电子排斥作用,因此部分电子将从Ni~(2+)经O~(2-)转移至高自旋态的Fe3+,从而在Ni2+和Fe3+之间形成了较强的电子耦合作用.Co~(2+)具有和Ni~(2+)相似的构型,但影响稍小.而Mn~(2+)和Fe~(3+)同为高自旋态,对Fe~(3+)的电子结构影响最小,导致活性改善程度最低.密度泛函理论计算得到的自旋态变化情况印证了上述推测.该系列Fe基双金属材料的催化性能主要受金属活性位点的电子结构影响, Fe与邻近金属间形成的电子耦合作用修饰了金属活性位点的电子结构,从而提高了材料的OER本征催化活性.  相似文献   

13.
以碳纤维纸(CFP)为基底材料, 通过水热生长铁镍前驱体、 多巴胺包覆和焙烧转化的方法制备出FeNi合金纳米颗粒@氮掺杂碳(FeNi alloy@NC)复合催化剂. 通过改变反应体系中Fe/Ni前驱体的摩尔比可改变合金组成为Fe0.64Ni0.36和FeNi3, 同时催化剂微观结构也由纳米管状变为花状团簇以及片层结构. 在碱性介质中进行电化学析氧反应测试, 发现 FeNi3@NC(1∶3)催化剂表现出了最优的催化活性和稳定性, 合金颗粒与NC层的协同相互作用、 NC保护层的构建以及催化剂的三维微观立体结构是催化剂性能优异的主要原因.  相似文献   

14.
以氧化石墨烯为载体,采用乙醇共还原法制备了石墨烯负载Pt-Pd双金属纳米催化剂,并将其用于催化碱性硼氢化钾(KBH_4)水解制氢研究.采用X射线衍射(XRD)分析和透射电子显微镜(TEM)等手段表征了催化剂的微观形貌和结构,发现当金属催化剂中Pt/Pd摩尔比为1∶1时,Pt-Pd双金属催化剂颗粒可均匀地负载于石墨烯载体表面,而且粒径比单金属催化剂和其它组成的双金属催化剂粒径更小,约为5.6 nm.将该催化剂用于催化碱性条件下KBH_4水解制氢实验,结果表明,金属催化剂的化学组成对其催化性能有明显影响,当Pt/Pd摩尔比为1∶1时其催化活性高于其它化学组成(Pt/Pd摩尔比为4∶1或1∶4)的Pt-Pd双金属催化剂,催化活性可达4380 mol_(H2)·mol_M~(-1)·h~(-1),比Pt单金属催化剂活性提高约52%,为Pd单金属催化剂活性的4倍.通过催化反应动力学研究发现,Pt-Pd双金属催化剂催化KBH_4水解制氢反应的活化能约为20.90k J/mol,催化剂具有较佳的耐久性,连续使用3次后催化效率仍可达首次催化反应效率的83%.利用密度泛函理论研究了催化剂催化KBH_4水解反应的机制,发现双金属纳米催化剂可以明显降低硼氢化物水解反应决速步骤基元反应的势垒,从而显著提高催化剂的催化活性.  相似文献   

15.
开发低成本、高效的空气电极催化剂是发展锂空气电池的关键课题之一. 采用邻菲咯啉(phen)为配体制备Co(phen)2配合物,负载于BP2000 碳载体上,并分别在600、700、800 和900 ℃的温度下进行热处理,制备得到碳支撑的Co-N催化剂(Co-N/C). 对催化剂的氧还原反应/析氧反应(ORR/OER)活性进行了表征,并且与典型的CoTMPP/C催化剂进行了比较. 同时研究了煅烧温度对Co-N/C催化剂的组成和结构的影响. 电化学测试结果表明,热处理温度为700-800 ℃时催化剂具有较好的电化学性能. Co-N/C催化剂具有电化学性能优良与低成本的特点,是一种良好的锂氧气电池催化剂.  相似文献   

16.
开发低成本、高效的空气电极催化剂是发展锂空气电池的关键课题之一.采用邻菲咯啉(phen)为配体制备Co(phen)2配合物,负载于BP2000碳载体上,并分别在600、700、800和900°C的温度下进行热处理,制备得到碳支撑的Co-N催化剂(Co-N/C).对催化剂的氧还原反应/析氧反应(ORR/OER)活性进行了表征,并且与典型的CoTMPP/C催化剂进行了比较.同时研究了煅烧温度对Co-N/C催化剂的组成和结构的影响.电化学测试结果表明,热处理温度为700-800°C时催化剂具有较好的电化学性能.Co-N/C催化剂具有电化学性能优良与低成本的特点,是一种良好的锂氧气电池催化剂.  相似文献   

17.
采用一步水热法合成了硼、磷共掺杂铁钴材料(Fe-Co-B-P)。借助扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)等技术对所合成材料的形貌、结构和组成进行表征。利用线性扫描伏安(LSV)、循环伏安(CV)、电化学阻抗谱(EIS)等技术研究材料电化学析氧反应(OER)性能。结果表明,Fe-Co-B-P表面疏松且粗糙,颗粒间有许多空隙。在电流密度为10和100 mA·cm-2时,其过电势分别为278和309 mV,Tafel斜率为24 mV·dec-1,说明该材料具有较优的电催化析氧性能。其在连续进行10 h的计时电位测试过程中,电势基本保持在1.55 V(vs RHE),表明该催化剂具有较好的电化学稳定性。这是由于铁钴双金属与硼、磷非金属之间的协同作用促进了电子的传递。  相似文献   

18.
从环境兼容角度来设计应用于氧析出反应的电催化剂是否有效、耐用和廉价对能源转化过程至关重要. 本文报告了一种快速制备低成本、原料丰富的金属催化剂制备方法。通过一步电化学沉积法在钛金属基材上制备了铁、镍、钴金属及其钴镍、钴铁二元金属纳米颗粒. 采用场发射电子显微镜 (FE-SEM), 能量散射X-射线能谱 (EDX), X-射线衍射光谱 (XRD), X-射线光电子能谱 (XPS)和电化学技术对制备的不同纳米颗粒进行了表征. 电化学结果显示,在合成的五种钛基金属纳米催化剂中, 钛基上沉积钴金属纳米颗粒(Ti/Co)电极在0.l mol·L-1氢氧化钾溶液中氧析出反应的电催化活性最好,0.70 V(相对于银/氯化银电极)的电流密度为10.0 mA·cm-2. 经优化后Ti/Co电极的过电位(η)很小,当电流密度为10.0 mA·cm-2时η为0.43 V,质量活性高达105.7 A·g-1,逆转频率(TOF)值为1.63×10-3 s-1, 这些与当前最好的碳载铂(Pt/C)和氧化钌(RuO2)电催化剂的性能相当. 此外,通过计时电位技术对优化后Ti/Co电极的耐久性进行了测试, 发现该电极在碱性溶液中氧析出反应的稳定性良好. 本工作制备的钛金属基材上电化学沉积金属钴纳米颗粒具有高催化活性、高稳定性、原料来源丰富、廉价且易于大规模生产,在工业化水分解领域具有潜在的应用前景.  相似文献   

19.
开发碱性体系的高效低成本析氧电催化剂是由可再生能源转化制氢的关键。本研究通过在泡沫Ni基底上原位电化学沉积的方法制备了花瓣状NiFeOxHy和NiFeOxHy/rGO复合催化剂用于析氧反应。花瓣状的结构不仅明显提高了催化剂的比表面积,而且暴露了更多的层状边缘和缺陷,进而增加了催化剂的活性中心。还原氧化石墨烯的加入进一步提升了催化剂的电导和析氧电催化性能,通过优化NiFeOxHy/rGO在1 mol/L KOH溶液中的析氧性能为:过电位200 mV(10 mA/cm2)、Tafel斜率29.11 mV/decade,并且保持了较好的稳定性。  相似文献   

20.
本文中主要研究了原始溶液中Ni、Co质量比(wNi∶wCo)对Ni-Co-S-O复合材料催化剂结构及性能的影响。采用水热法在泡沫镍(NF)基底上制备出了三维分层花瓣状纳米结构的Ni-Co-S-O复合材料催化剂。当原始溶液中wNi∶wCo=1∶2时,所制备的Ni-Co-S-O/NF(1∶2)催化剂具有更大的电化学活性面积(ECSA),在碱性水电解析氧过程中具有最好的电催化性能。在1 mol·L-1KOH碱性溶液中,Ni-Co-S-O/NF(1∶2)仅需61和313 mV的过电位,可分别获得10和100 mA·cm-2的电流密度,并且其Tafel斜率为155 mV·dec-1。Ni-Co-S-O/NF(1∶2)催化剂在碱性条件下100 mA·cm-2的恒定高电流密度下运行24 h后仍能保持片状结构,表现出良好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号