首页 | 本学科首页   官方微博 | 高级检索  
     检索      

空心NiCo2S4纳米球助催化剂担载ZnIn2S4纳米片用于可见光催化制氢
引用本文:熊壮,侯乙东,员汝胜,丁正新,王伟俊,汪思波.空心NiCo2S4纳米球助催化剂担载ZnIn2S4纳米片用于可见光催化制氢[J].物理化学学报,2022,38(7):2111021-71.
作者姓名:熊壮  侯乙东  员汝胜  丁正新  王伟俊  汪思波
作者单位:1 福州大学化学学院, 能源与环境光催化国家重点实验室, 福州 3501162 马来西亚厦门大学能源与化学工程学院, Selangor Darul Ehsan 43900, 马来西亚3 厦门大学化学化工学院,福建 厦门 361005
基金项目:supported financially by the National Key R&D Program of China(2021YFA1502100);;the National Science Foundation of China(U1805255);;the State Key Laboratory of NBC Protection for Civilian(SKLNBC2020-18)~~;
摘    要:纳米片与空心球上之间的合理界面调控是开发高效太阳能制氢光催化剂的潜在策略。在各类光催化材料中,金属硫化物由于具有相对较窄的带隙和优越的可见光响应能力而被广泛研究。ZnIn2S4是一种层状的三元过渡金属半导体光催化剂,其带隙可控(约2.4 eV)。在众多金属硫化物光催化剂中,ZnIn2S4引起了广泛兴趣。然而,单纯的ZnIn2S4光催化活性仍然相对较差,主要是因为光生载流子的复合率较高、迁移速率较慢。在半导体光催化剂上负载助催化剂是提升光催化剂性能的一种有效方法,因为它不仅可以加速光生电子和空穴的分离,而且还可以降低质子还原反应的活化能。作为一种三元过渡金属硫化物,NiCo2S4表现出较高的导电性、较低的电负性、丰富的氧化还原特性以及优越的电催化活性。这些特性表明,NiCo2S4可以作为光催化制氢的助催化剂,以加速电荷分离和转移。此外,NiCo2S4和ZnIn2S4都属于三元尖晶石的晶体结构,这可能有助于构建具有紧密界面接触的NiCo2S4/ZnIn2S4复合物,从而提高光催化性能。本文中,将超薄ZnIn2S4纳米片原位生长到非贵金属助催化剂NiCo2S4空心球上,形成具有强耦合界面和可见光吸收的NiCo2S4@ZnIn2S4分级空心异质结构光催化剂。最优NiCo2S4@ZnIn2S4复合样品(NiCo2S4含量:ca. 3.1%)的析氢速率高达78 μmol·h-1,约是纳米片组装ZnIn2S4光催化剂析氢速率的9倍、约是1% (w, 质量分数)Pt/ZnIn2S4样品析氢速率的3倍。此外,该复合光催化剂在反应中表现出良好的稳定性。荧光和电化学测试结果表明,NiCo2S4空心球是一种有效的助催化剂,可促进光生载流子的分离和传输,并降低析氢反应的活化能。最后,提出了NiCo2S4@ZnIn2S4光催化析氢的可能反应机理。在NiCo2S4@ZnIn2S4复合光催化剂中,具有高导电性的NiCo2S4助催化剂可快速接受ZnIn2S4上的光生电子,用以还原质子生成氢气,而电子牺牲剂TEOA捕获光生空穴,进而完成光催化氧化还原循环。该研究有望为基于纳米片为次级结构的分级空心异质结光催化剂的设计合成及其光催化制氢研究提供一定的指导。

关 键 词:光催化  产氢  助催化剂  金属硫化物  
收稿时间:2021-11-15

Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production
Zhuang Xiong,Yidong Hou,Rusheng Yuan,Zhengxin Ding,Wee-Jun Ong,Sibo Wang.Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production[J].Acta Physico-Chimica Sinica,2022,38(7):2111021-71.
Authors:Zhuang Xiong  Yidong Hou  Rusheng Yuan  Zhengxin Ding  Wee-Jun Ong  Sibo Wang
Institution:1. State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China;2. School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia;3. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
Abstract:The rational interface tailoring of nanosheets on hollow spheres is a promising strategy to develop efficient photocatalysts for hydrogen production with solar energy. Among the various photocatalyst materials, metal sulfides have been extensively researched because of their relatively narrow band gap and superior visible-light response. ZnIn2S4 is a layered ternary chalcogenide semiconductor photocatalyst with a tunable band gap energy (approximately 2.4 eV). Among various metal sulfide photocatalysts, ZnIn2S4 has gained considerable attention. However, intrinsic ZnIn2S4 only exhibits a relatively moderate photocatalytic activity, which is mainly owing to the high recombination and low migration rate of photocarriers. Loading cocatalysts onto semiconductor photocatalysts is an effective way to improve the performance of photocatalysts, because it can not only facilitate the separation of electron-hole pairs, but also reduce the activation energy for proton reduction. As a ternary transition metal sulfide, NiCo2S4 features a high electrical conductivity, low electronegativity, excellent redox properties, and outstanding electrocatalytic activity. Such favorable characteristics suggest that NiCo2S4 can expedite charge separation and transfer, thereby promoting photocatalytic H2 production by serving as a cocatalyst. Moreover, both NiCo2S4 and ZnIn2S4 possess the ternary spinel crystal structure, which may facilitate the construction of NiCo2S4/ZnIn2S4 hybrids with tight interfacial contact for an enhanced photocatalytic performance. Herein, ultrathin ZnIn2S4 nanosheets were grown in situ on a non-noble-metal cocatalyst, namely NiCo2S4 hollow spheres, to form hierarchical NiCo2S4@ZnIn2S4 hollow heterostructured photocatalysts with an intimately coupled interface and strong visible light absorption extending to ca. 583 nm. The optimized NiCo2S4@ZnIn2S4 hybrid with a NiCo2S4 content of ca. 3.1% exhibited a high hydrogen evolution rate of 78 μmol·h-1, which was approximately 9 times higher than that of bare ZnIn2S4 and 3 times higher than that of 1% (w, mass fraction) Pt/ZnIn2S4. Additionally, the hybrid photocatalysts displayed good stability in the reaction. Photoluminescence and electrochemical analysis results indicated that NiCo2S4 hollow spheres served as an efficient cocatalyst for facilitating the separation and transport of light-induced charge carriers as well as reducing the hydrogen evolution reaction barrier. Finally, a possible reaction mechanism for the photocatalytic hydrogen evolution was proposed. In the NiCo2S4@ZnIn2S4 composite photocatalyst, the NiCo2S4 cocatalyst with high electrical conductivity favorably accepts the photoinduced electrons transferred from ZnIn2S4 and then employs the electrons to reduce protons for H2 production on the reactive sites. Concurrently, the photogenerated holes are trapped by TEOA that acts as a hole scavenger to accomplish the photoredox cycle. This study provides guidance for the fabrication of hierarchical hollow heterostructures based on nanosheet semiconductor subunits as remarkable photocatalysts for hydrogen production.
Keywords:Photocatalysis  H2 production  Cocatalyst  Metal sulfides  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号