首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   23篇
  国内免费   7篇
化学   14篇
晶体学   2篇
力学   6篇
综合类   2篇
数学   6篇
物理学   51篇
  2023年   5篇
  2022年   2篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2006年   5篇
  2005年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   2篇
  1993年   1篇
排序方式: 共有81条查询结果,搜索用时 109 毫秒
1.
首先,采用高温固相法制备层状前驱体CsTi_2NbO_7,再通过与硝酸进行质子交换形成层状HTi_2NbO_7;其次,在四丁基氢氧化铵(TBAOH)中剥离层状HTi_2NbO_7以获得HTi_2NbO_7纳米片;然后与尿素混合并高温焙烧;最后成功地得到了氮掺杂的HTi_2NbO_7纳米片光催化剂。使用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射吸收光谱(UV-Vis DRS)以及N_2吸附-脱附测试等方式对所制备样品的晶体结构、形貌、比表面积、孔分布和光吸收能力等进行详细的表征。研究表明,氮掺杂后减小了HTi_2NbO_7的禁带宽度,从而使光响应范围扩展到可见光区域;掺杂的氮原子主要位于Ti_2NbO_7-薄片的间隙位置,并与氢离子化学键合;与N掺杂的层状HTi_2NbO_7相比,N掺杂的HTi_2NbO_7纳米片具有更大的比表面积和更丰富的介孔结构,这是由于钛铌酸纳米片相对松散且不规则的排列。因此,在降解罗丹明B(RhB)溶液时,N掺杂的HTi_2NbO_7纳米片比N掺杂的层状HTi_2NbO_7具有更加优异的可见光催化活性。  相似文献   
2.
3.
宽条形半导体激光器广泛应用于激光泵浦、激光加工等领域。针对宽条型半导体激光器输出光谱宽、调谐范围小的问题,采用衍射效率分别为28%和55%的反射式衍射光栅作为反馈元件构建了宽条形970 nm波长光栅外腔半导体激光器。研究了Littrow结构激光器参数对其性能(调谐范围、功率、阈值电流、线宽)的影响。实验结果表明,通过结构优化可得到窄线宽可调谐激光输出,适当地提高温度和使用较高衍射效率的光栅可增加激光器调谐范围,并且较高衍射效率的光栅可降低激光器的阈值电流。基于S偏振入射方式的光栅外腔激光器最大可实现27.87 nm的波长调谐范围,光谱线宽压窄至0.2 nm,输出功率可达1.11 W。  相似文献   
4.
随着半导体激光器光源在激光加工领域的应用不断拓展,研制高耦合效率的半导体激光器光纤耦合模块变得十分重要。为了进一步提高光纤耦合激光二极管模块的输出功率,本文应用ZEMAX光学设计软件进行仿真模拟,将12只波长为808 nm、输出功率为10 W的单管半导体激光器通过合束方法高效率耦合进光纤。耦合光纤芯径为150μm、数值孔径为0.22,光纤输出功率为116.2 W,耦合效率为96.8%。  相似文献   
5.
介绍了一种氩、氢混合等离子体清洗GaAs基片的实验工艺,深入研究了氩、氢等离子体清洗GaAs表面污染物和氧化层,并活化表面性能的基本原理,同时讨论了气体流量、溅射功率和清洗时间等不同溅射参数对等离子体清洗效果的影响。结果表明,在氩气和氢气流量分别为10 cm3/min和30 cm3/min,溅射功率为20 W,清洗时间为15 min的条件下,GaAs样品的光致发光强度提高达139.12%,样品表面的As-O键和Ga-O键基本消失。  相似文献   
6.
射频等离子硫钝化GaAs(100)的表面特性   总被引:11,自引:10,他引:1  
采用射频等离子方法,对Ga As(100)衬底片表面进行干法硫等离子体钝化,旨在得到性能稳定含硫钝化层。样品经过360℃温度条件下的快速热退火,光致发光(PL)测试表明,钝化后的样品PL强度上升了71%。同时,钝化样品的稳定性测试结果表明,样品放置在实验室空气中30 d,其PL强度未出现明显变化,说明Ga As的等离子体干法硫钝化具有较好的性能稳定性。  相似文献   
7.
曲轶  高欣 《光子学报》2000,29(Z1):428-430
本文分析了影响列阵半导体激光器输出功率的因素。利用分子束外延生长方法生长出InGaAs/GaAs应变量子阱激光器材料。利用该材料制作的应变量子阱列阵半导体激光器准连续(100Hz,100μs)输出功率达到80W(室温),峰值波长为978-981nm。  相似文献   
8.
裂纹问题的一致性高阶无网格法   总被引:2,自引:0,他引:2  
一致性高阶无网格法能高效精确地求解连续体问题,尤其是能得到高精度的应力场。本文将该方法拓展到应力解析精度至关重要的裂纹问题(即非连续体问题)的数值分析。采用背景积分网格描述裂纹几何,基于无需增加节点额外自由度的虚拟节点法描述裂纹处位移场的间断,提出了虚拟节点的引入算法和断裂单元的数值积分方法。为进一步模拟裂纹扩展,采用相互作用积分方法计算应力强度因子,裂纹的扩展方向由最大周向应力准则确定。数值结果表明,本文发展方法能够精确地通过间断分片试验;相较于标准的高阶无网格法和低阶一致性无网格法,本文的一致性高阶无网格法显著改善了应力强度因子的计算精度,能够准确预测裂纹扩展路径。  相似文献   
9.
自适应一致性高阶无单元伽辽金法   总被引:5,自引:4,他引:1  
近来提出的一致性高阶无单元伽辽金法通过导数修正技术大幅度减少了所需积分点数目,并能够精确地通过线性和二次分片试验,显著改善标准无单元伽辽金法的计算效率、精度和收敛性.本文在此基础之上,充分利用无单元法易于在局部区域添加节点的优势,发展了一致性高阶无单元伽辽金法的h型自适应分析方法.根据应变能密度梯度该方法自适应地确定需节点加密的区域,基于背景积分网格的局部多层细化要求生成新的计算节点,同时考虑了节点分布由密到疏渐进过渡的情形.采用相邻两次计算的应变能的相对误差作为自适应过程的停止准则,将所发展自适应无网格法应用于由几何外形、边界外载和体力等因素造成的应力集中问题的计算分析.数值结果表明,所发展方法能够自适应地对高应力梯度区域进行节点加密,自动给出合理的计算节点分布.与已有的标准无网格法的自适应分析相比,所发展方法在计算效率、精度和应力场光滑性等方面均展现出显著优势.与采用节点均匀分布的一致性高阶无单元伽辽金法相比,它大幅度地减少了计算节点数目,有效提高了一致性高阶无单元伽辽金法在分析应力集中等存在局部高梯度问题时的计算效率和求解精度.  相似文献   
10.
对1:55 μm波长DFB 结构的InGaAsP 多量子阱激光二极管开展电子和60Co- 射线辐照试验。试验结果表明,激光二极管的斜度效率主要受带电粒子沉积的电离总剂量影响,而阈值电流和光功率主要受位移损伤剂量的影响。利用位移损伤剂量方法评价激光二极管的辐射损伤特征,并且预测其在空间辐射环境中的光功率衰退情况。模拟计算结果表明,MEO轨道辐射环境对激光二极管光功率辐射损伤远大于GEO轨道的影响,这主要是由于MEO轨道辐射环境的高能电子通量密度远大于GEO轨道的通量密度。The 1.55 μm InGaAsP multi-quantum-well laser diodes with distributed feedback structures were irradiated by electrons and 60Co- rays. The experimental results show the slope efficiency of laser diode is mostly affected by the total ionizing dose produced by charging particles, and the threshold current and the optical power mainly by displacement damage dose. The displacement damage dose methodology was employed to evaluate radiation damage of the laser diodes, and to predict the power degradations of these diodes in space. The calculated results indicate that the optical powers of the diodes will have more serious degradation for medium Earth orbit than for geosynchronous Earth orbit,due to higher fluence density of high energy electrons in GEO orbits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号