首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
固体超强酸SO4^2——MoO3—TiO2的制备及其催化酯化性能研究   总被引:23,自引:0,他引:23  
SO4^2--MxOy型固体超强酸自问世以来一直受到人们的广泛关注,已对其进行了大量的研究。该类催化剂的酸度强度高,在烷基化、酰基化、裂解、醇脱水、异构化、酯化等反应中有很高的催化活性。最常用的氧化物基体是ZrO2和TiO2,最后的促进剂SO4^2-。也有用MoO3作促进剂的^[1-3],得到相应的超强酸催化剂。作者在SO4^2--TiO2超强酸的基础上,将MoO3和SO4^2-同时负载在TiO2基体上,得到SO4^2--MoO3-TiO2固体超强酸,以乙酸异戊酯的合成为探针反应考察了该催化剂的催化酯化活性,并与SO4^2--TiO2、MoO3-TiO2的催化酯化活性作了比较。  相似文献   

2.
新型固体超强酸催化剂的制备与裂解性能研究   总被引:7,自引:0,他引:7  
采用浸渍法,将活性超强酸SO4^2-/ZrO2引入Si-MCM-41介孔分子筛,得到一种新型的固体超强酸催化剂SO4^2-/ZrO2 /Si-MCM-41,其PKA值可达-12.7,酸度分布曲线表明强酸中心数量远低于弱酸中心,XRD结果显示,Si-MCM-41骨架部分塌陷,但保留了主要骨架结构,采用Py-IP法,测定SO4^2-/ZrO2 /Si-MCM-41上酸类型以L酸为主,在催化1,3,5-三异丙苯裂解反应中该催化剂的性能优于微孔分子筛。  相似文献   

3.
固体超强酸因其特殊的晶相结构和表面特性及高比表面积使其具有许多重要的催化特性[1],某些经特殊处理得到的金属氧化物(如ZrO2、TiO2、Fe 2O3等)负载SO24-后可以成为固体超强酸[2]..有关SO24-/ZrO2系列固体超强酸的研究和应用报道较多[3,4a,5].夏勇德等[4b,6]报道用(NH4)2S2O8浸渍无定形Zr(OH)4可制备超强酸性和催化活性比SO24-/ZrO2更强的新型固体超强酸S2O28-/ZrO2.本文在文献方法的基础上,制出新型固体超强酸S2O28-/ZrO2-Al2O3,以乙酸和正丁醇的酯化反应作探针,优选出高活性催化剂并成功地用于催化合成4种缩酮(醛)类化合物.它们经纯化处理后均可作为食用香料.  相似文献   

4.
采用分别沉淀-混合-浸渍法制备了稀土固体S2O82-/ZrO2-SiO2-Sm2O3催化剂.分别以乙酸丁酯和乳酸丁酯的合成为探针反应,考察了不同制备条件对催化剂活性的影响及催化剂的稳定性,并采用IR,XRD,DTA/TGA,TEM,BET和XPS等手段对催化剂进行了表征,结果表明本文制得的催化剂属无定型、桥式结构为主的固体超强酸,且其稳定性及活性均比SO42-/ZrO2-SiO2有较大的提高.  相似文献   

5.
纳米固体超强酸SO42-/ZrO2催化莰烯合成异龙脑   总被引:2,自引:0,他引:2  
自1979年报道了无卤素SO42-促进型氧化物固体酸以来[1],固体酸催化剂作为一类新型绿色催化剂备受人们关注。近来又发现将固体超强酸制成纳米微粒具有更强的催化活性[2-3]。本文以纳米固体超强酸SO42-/ZrO2为催化剂,以莰烯和草酸为原料,通过酯化-皂化法合成了异龙脑。1实验部分1  相似文献   

6.
王知彩 《分析化学》2006,34(2):219-222
采用气相色谱-质谱法(GC/MS)对SO42-/ZrO2固体超强酸催化氯化苄与苯烷基化反应产物的组成与结构进行了分析,并对SO42-/ZrO2催化的选择性进行了初步探讨。结果表明:SO42-/ZrO2固体超强酸对氯化苄与苯的烷基化反应具有良好的催化活性,反应产物主要为二苯甲烷、苄基二苯甲烷与氯甲基二苯甲烷等7种苄基化物。SO42-/ZrO2固体超强酸催化的产物选择性与经典Lew is酸催化特征基本一致。  相似文献   

7.
SO2-4/TiO2-SiO2固体超强酸的结构及其光催化性能   总被引:10,自引:0,他引:10  
自从Arata等[1]首次报道无卤素型SO2-4/MxOy固体超强酸体系以来, 对该类催化剂的研究引起了人们的广泛重视. 大量研究工作表明, 固体超强酸催化剂对丁烷异构化、苯衍生物烷基化、链烷烃裂解和乙烯二聚等诸多酸催化的反应表现出极高的反应活性[2]. 最近, 我们把SO2-4/TiO2型固体超强酸应用于有机物的光催化氧化反应, 研究发现TiO2光催化剂经H2SO4浸渍处理形成固体超强酸后, 催化剂的光催化活性大大提高, 并具有很好的反应活性、稳定性和抗湿性能[3];  相似文献   

8.
刘静  陈均志 《合成化学》2006,14(6):618-620,627
以马来酸酐和异戊醇为原料,复合型固体超强酸ZrO2-TiO2/SO2-4-为催化剂催化合成了马来酸二异戊酯.最佳工艺条件为:催化剂活化温度450℃,活化时间5 h,1.0 mol·L-1H2SO4,催化剂用量1.0 g,酸醇摩尔比为1:4,回流分水70 min,酯化率达98.72%.ZrO2-TiO2/SO2-4-具有良好的催化活性,可重复使用5次以上.  相似文献   

9.
以马来酸酐和异戊醇为原料,复合型固体超强酸ZrO2-TiO2/SO24-为催化剂催化合成了马来酸二异戊酯。最佳工艺条件为:催化剂活化温度450℃,活化时间5 h,1.0 mol.L-1H2SO4,催化剂用量1.0 g,酸醇摩尔比为1∶4,回流分水70 m in,酯化率达98.72%。ZrO2-TiO2/SO42-具有良好的催化活性,可重复使用5次以上。  相似文献   

10.
催化精馏专用填料型固体酸SO42-/ZrO2-Al2O3-Al的研究   总被引:2,自引:0,他引:2  
为了研制催化精馏专用催化剂,采用铝阳极氧化法制备了Al2O3-Al一体型载体,并将活性固体超强酸SO42-/ZrO2引入到Al2O3-Al上,得到一种新型催化精馏专用填料式固体酸SO42-/ZrO2-Al2O3-Al催化剂.利用XRD、 SEM、 BET、 XPS、 NH3-TPD等手段对其进行了表征.结果表明,所制得的阳极氧化铝膜厚为56 μm, SO42-/ZrO2-Al2O3-Al固体酸具有比表面积大、酸强度适中的特点.XRD结果表明, ZrO2在Al2O3-Al上处于高度分散状态.将该固体酸用于乙酸/乙醇酯化反应中,显示出较高的催化活性,且稳定性较好.  相似文献   

11.
通过沉淀 浸渍法制备了一系列SO4 2-/ZrO2固体酸催化剂,利用NH3-TPD、FT-IR及间歇式高压加氢实验考察了SO4 2-/ZrO2固体酸的酸性和催化液化性能。对SO4 2-/ZrO2固体酸的结构进行了XRD、BET及TG/DTA表征。结果表明,SO4 2-/ZrO2固体酸表面酸中心强度呈非均一化、连续分布,中强酸是SO4 2-/ZrO2主要的酸中心;煤液化反应中,SO4 2-/ZrO2固体酸催化作用主要表现为催化裂解,酸中心越强,催化活性越高;提高SO4 2-/ZrO2焙烧温度,有利于提高酸中心强度及强酸中心分布、增大煤的转化率;650℃焙烧3h ,SO4 2-/ZrO2催化活性最高,煤液化转化率达到76.77%。  相似文献   

12.
Superacid catalyst SO42--ZrO2/TiO2 was applied in esterification of Acetic Acid and Butanol. The particle size of ZrO2 in the catalyst was about 12.5 nm. In catalyst preparation conditions, the effect factor order on catalytic activity is H2SO4 concentration > calcination temperature > ZrO2 supported content. The optimum preparation condition is as follows: ZrO2 content 3.5g/g; calcination temperature 600℃, and H2SO4 concentration 0.5mol/L. The catalytic activity is 96.5 vol%.SO42-/MxOy solid superacid is a kind of green catalyst, whose application perspective is bright. In this paper, SO42--ZrO2/TiO2 solid superacid was prepared with nanometer compound carrying method. The acidic strength of catalysts was measured with the following Hammett indicators, 2,4-dinitrofluorobenzene (H0=-14.52) and p-nitrochlorobenzene (H0=-12.70). Catalytic activity was evaluated with esterification reaction of Acetic Acid and Butanol. Reaction temperature was at 105℃, and reaction time was only 1h. The conversion rate of Acetic Acid was analyzed by a gas chromatograph (GC-14C SHIMADZU in Japan)The experimental results showed that H2SO4 concentration had more influences on catalytic activity than other two factors, calcination temperature and ZrO2 supported content. Since sulfur absorbed on the surface of metal oxides is necessary to the acidity of SO42-/MxOy solid superacid,H2SO4 concentration in impregnation solution is needed enough high. But, it can't be too much high,otherwise, Zirconium sulfate formed on the catalyst surface will be harmful influences on catalytic activity. In researched cover, 0.5mol/L H2SO4 concentration is the most suitable, and the catalyst prepared with this concentration has very strong acidity.The optimum preparation condition is as follows: ZrO2 content 3.5g/g; calcination temperature 600℃, and H2SO4 concentration 0.5mol/L. In the catalyst prepared with above conditions, the acidic strength (H0) of the catalyst is smaller than <-14.52, and catalytic activity is 96.5 vol%. When it was re-used in esterification reaction, catalytic activity decreased gradually with re-used times increasing(seen in Table 1). But after catalyst is used repeatedly up to five times, catalytic activity (84.3 vol %)is still higher than that of H2SO4 catalyst.The X-ray diffraction patterns showed that ZrO2 supported in TiO2 belonged tetragonal zirconia phases. Through the calculation of Scherrer formula, the particle size of ZrO2 in the catalyst is about 12.5 nm. After SO42- promoted nanometer ZrO2/TiO2 compound carrier, the diffraction peaks of tetragonal zircoma become broader and the strength weaker. It shows that adding SO4 ions restrains the crystallization of ZrO2, diminishes the size of particles. This might be why SO42--ZrO2/TiO2 has high catalytic activity and stability in acidic catalysis reaction.  相似文献   

13.
Super acidic catalyst SO42-/ZrO2 was prepared and characterized by XRD,IR,and Py-IR. Selectively catalytic gas phase flow reactions of benzene and propene over the catalyst were carried out in a made-to-measure high pressure flow reactor with a thermometer and a condenser. The benzene and propene were kept in pressure tanks at 8 : 1 ratio with N2 gas at 4. 0 MPa. The reactants were pumped into the quantifier where the pressure was maintained by N2 gas at 8. 0 MPa. They were then pumped into the reaction reactor using catalytic synthesis of isopropyl benzene. The collected liquid phase products were analyzed using GC-MS. Product analyses were carried out on SE-54. The effect of the preparative condition on the catalytic synthesis of isopropyl benzene over the catalysts has been tested. The result shows that the SO42-/ZrO2 can be used as a catalyst for the title reaction,and shows higher conversion(99.2%)for the propene and higher selectivity(93.3%)for the isopropyl benzene when the catalyst is preparated in some condition.  相似文献   

14.
用浸渍法制得一系列不同铁负载量的Fe2O3/ZrO2催化剂,应用催化反应评价结合穆斯堡尔谱对催化剂的CO加氢反应性能、催化剂活性相结构及催化剂铁物种在合成气反应过程中的物相变化进行了研究.结果表明,铁负载量的大小对于Fe2O3/ZrO2催化剂的F-T反应催化性能有很大影响,铁负载量适当时,Fe2O3/ZrO2催化剂铁锆间适当的强相互作用使得催化剂在保持较高催化活性的同时高选择性地生成低碳烯烃,产物分布偏离Schulz-Flory分布规律.  相似文献   

15.
SO_4~(2-)/ZrO_2催化剂上正丁烷异构化反应   总被引:4,自引:0,他引:4  
考察了活化温度、反应温度、空速、H2/C4比和载Pt对SO2-4/ZrO2催化剂的正丁烷异构化反应活性和稳定性的影响.较高的H2/C4比可提高SO2-4/ZrO2催化剂的稳定性和稳态活性.催化剂负载Pt后,可降低反应原料中的H2/C4比.积炭是造成反应初始阶段催化剂迅速失活的主要原因,经烧炭再生以后这部分失活可以完全恢复  相似文献   

16.
固体超强酸催化剂SO4^2——MoO3—ZrO2中MoO3的作用与催化性能   总被引:15,自引:0,他引:15  
黄碧纯  马紫峰 《分子催化》1999,13(5):383-387
根据固体超强酸催化剂SO4^2-MoO3-ZrO2的特点,结合活性评价结果,用BET、DTA/TG、XRD、LRS等方法,对其进行了物性表征,考察了催化剂的结构形态、性质随催化剂组成的变化,以及催化剂的物性结构特点与催化活性的关系。研究结果表明,MoO3含量对催化剂活性有着显著影响;催化剂的比表面积随MoO3的含量变化存在极大值;MoO3具有延迟ZrO2晶化、稳定SO4^2-的作用,并提高了SO4  相似文献   

17.
引入SiO2对SO4^2—/ZrO2超强酸体系的影响   总被引:11,自引:0,他引:11  
用共沉淀法和负载法制备了一系列SO4^2-/ZrO2催化剂,详细研究了添加SiO2对SO4^2-/ZrO2超强酸样品的晶化、比表面、硫含量、超强酸性和异丙苯裂解及异丙醇脱水反应的影响。引入SiO2会延迟ZrO2的晶化和晶相转变,减弱SO4^2-/ZrO2体系的超强酸性,但对提高样品的异丙苯裂解和异丙醇脱水反应活性有利。  相似文献   

18.
磁性纳米固体超强酸的合成、表征及性能   总被引:16,自引:0,他引:16  
首次制备了SO42-/Co0.5Fe2.5O4-ZrO2磁性固体超强酸,利用TEM,DTA,XRD和FTIR等手段研究了Co0.5Fe2.5O4磁性基质对ZrO2的粒子大小、晶化温度与结构的影响.考察了磁性固体超强酸的催化性能及催化剂的寿命、回收率和磁性.结果表明,引入Co0.5Fe2.5O4磁性基质不但赋予催化剂以磁性,而且在固体超强酸形成过程中延迟了ZrO2由四方晶相向单斜晶相的转变,有助于稳定样品表面的含硫物种,磁性固体超强酸对酯化反应具有较高的催化活性,可活化再生,并保持磁性.  相似文献   

19.
以柠檬酸和正辛醇为原料,采用自制的纳米固体酸S04^2-/SnO2、SO4^2-/ZrO2、SO4^2-/TiO2及SO4^2-/Fe2O3催化剂合成无毒增塑剂柠檬酸三辛酯(trioctylcitrate,TOC)。分别考察了纳米催化剂种类、催化剂用量、醇/酸物质的量比、反应时间、反应温度等因素对合成TOC反应酯化率的影响,对合成的产品进行红外光谱分析。实验结果表明,自制的固体酸SO4^2-/SnO2催化合成无毒增塑剂柠檬酸三辛酯的最佳反应条件:催化剂用量为1.0g,酸醇比为1:6.3,反应时间1.0h,反应温度190℃。在最佳反应条件下,柠檬酸三辛酯的酯化率可达到98.5%。  相似文献   

20.
低温陈化超声波共沉淀法制得SO4^2-/ZrO2-La2O3前驱体,经H2SO4处理,在不同温度下焙烧得到纳米晶催化剂SO4^2-/ZrO2-La2O3;用Hammett指示剂法测定其酸性.用XRD、BET、TEM、IR和XPS对样品进行表征,其催化活性用醋酸和甘油的酯化反应进行了评价.结果表明经超声波搅拌和低温(-15℃)陈化,650℃焙烧4h得到的固体超强酸表现出较高催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号