首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
马来酸酐和苯乙烯是被广为研究的一对电荷转移复合物 (Chargetransfercomplex,简称CTC) ,而且能通过通常的自由基聚合发生交替共聚[1] .所得的聚合物由于酸酐基团的存在 ,很易进行大分子改性得到具有某些特殊功能的高分子 .不过 ,所得共聚物的分子量难以控制且分子量分布也较宽 .近年来发展起来的“活性” 可控自由基聚合越来越为人们所关注 ,因为采用这种方法不仅可对聚合物的分子量进行设计 ,同时分子量分布也较窄 ,也不需要活性离子型聚合那样严格的聚合条件 .关于烯类单体的活性自由基聚合迄今主要有氮氧自由基…  相似文献   

2.
活性 (或称可控 )自由基聚合研究是目前高分子科学的研究热点之一[1~ 8] .活性自由基聚合制备的聚合物具有分子量随转化率提高而线性增加、分子量分布窄和聚合反应为一级反应动力学等特点 .自由基开环聚合所得产物体积收缩小 ,某些含有不饱和双键的螺环单体发生双开环聚合时甚至发生体积膨胀 ;开环聚合还可在聚合物主链上引入各种官能团 ,如酯基、碳酸酯基、酮基等 [9~ 12 ] .因此 ,用活性聚合的方法对自由基开环聚合的分子量和分子量分布进行控制 ,可以制备出具有各种不同结构和性能的新聚合物 . Wei等 [13] 报道了利用稳定自由基法实现…  相似文献   

3.
具有RAFT链转移过程的活性自由基聚合的Monte Carlo模拟   总被引:1,自引:0,他引:1  
活性自由基聚合是近年来高分子合成领域中研究的热点之一 .目前主要有两种体系 ,其一是TEMPO调控的自由基聚合[1],但单体选择面窄 ,聚合速率慢 ;其二是原子转移聚合 ,单体适用面较广 ,但产物中常含有难以除去的金属离子[2 ].因此寻找单体适用性广 ,产物纯净的聚合体系 ,具有十分重要的意义 .近两年来 ,Thang等[36 ]发现用双硫酯调聚的自由基聚合具有活性特征 ,并指出其原因是这类体系中的链转移具有可逆性 ,称为可逆加成 裂解链转移过程 (RAFT) ,可示意如下 :Ri·+ CSZSRj(DSE)kaddkdisC·SRiZSRj…  相似文献   

4.
自由基聚合是制备聚合物材料最为重要的技术 .但由于自由基极易进行双基终止 ,一般很难对其结构进行精确的控制 ,所得产物分子量宽 ,组成分布不易控制 ,很难制备嵌段共聚物 . 2 0世纪 90年代出现的活性自由基聚合技术 (RAFT)克服了上述缺点 ,成为高分子化学研究的热点[1] .RAFT聚合以其适用单体广、聚合条件温和以及活性高而成为最具前途的活性自由基聚合技术之一 .迄今为止 ,RAFT的研究大多集中在溶液和本体等均相聚合体系 [2~ 5] .乳液聚合有聚合速率快、环境友好、体系粘度低等优点 ,是活性自由基聚合工业化首选工艺 ,因而近年来活…  相似文献   

5.
新引发体系引发MMA活性自由基聚合   总被引:6,自引:0,他引:6  
近年来 ,关于活性自由基聚合的研究极为活跃 ,已经发现了多种基于增长链自由基被可逆钝化形成休眠种的活性自由基聚合方法[1,2 ] .它们主要包括引发转移终止剂 ( Iniferter) ,稳定自由基聚合( SFRP) ,原子转移自由基聚合 ( ATRP) ,可逆加成 -断链链转移聚合 ( RAFT)等 .其中 ATRP因其具有可聚合单体多 ,反应条件相对缓和等优点而成为该领域的研究热点 [3~ 5] .ATRP活性自由基聚合的实现主要是在过渡金属催化剂的作用下 ,通过循环往复的碳 -卤键的活化、加成、碳 -卤键的再形成而得到最终活性的聚合物 ,引发体系由引发剂、过渡金属…  相似文献   

6.
通过自由基聚合制备窄分布且分子量可控聚合物是近年来倍受关注的研究课题 [1~ 6 ] .Matyjaszeski等 [1]报道了卤化亚铜 /二联吡啶 /卤代有机化合物作用下的原子转移自由基聚合 ,Kato[2 ]也报道了由氯化钌 ( ) /二联吡啶 /异丙醇铝 /卤代有机化合物作用下的丙烯酸酯自由基聚合 ,他们均分别得到了分子量分布非常窄的聚合物 .聚合过程中单体转化率随聚合时间的变化 ,聚合物分子量随聚合时间的变化关系等都与活性聚合相符或相近 ,国内学者 [3~ 6 ] 已对不同阶段的进展进行了综述 ,并且也开展了研究如由引发 -转移 -终止剂作用下进行的可控…  相似文献   

7.
90年代在自由基聚合基础研究领域的一个重要成是“长 短终止”理论被进一步确认和接受[1 ,2 ] .按照该模型 ,聚合反应中的终止反应主要发生在长链自由基与短链自由基或初级自由基之间 ,即长链自由基之间很难进行终止反应 ,链终止常数随链长增加而急剧下降 .80年代初 ,Simionescu等[3] 曾报道了用等离子体照射封有单体的玻璃管 ,尔后放入暗处聚合的工作 ,发现不仅可得到分子量上千万的聚丙烯酸或聚丙烯酰胺 ,而且聚合活性可保持几十个小时 ;国内学者[4] 利用该法也得到了分子量接近千万的聚丙烯酰胺 .基于这种终止模型和实验结果 ,…  相似文献   

8.
不饱和环状单体与烯类单体共聚所得的共聚物 ,已经或正在开发成一系列新的产品 .例如 ,水解后得到末端带有—OH,— SH,—COOH等官能团的聚苯乙烯、聚乙烯、聚甲基丙烯酸甲酯等的低聚物[1] ,用于制备新型聚酯和聚氨酯 ;与乙烯的共聚物可在细菌作用下彻底分解成脂肪酸或醇 ,可赋予聚合物生物降解活性 ;与双甲基丙烯酸酯等的共混物 ,可用于制作高强度补牙材料[2 ] 等 .以前报道的不饱和环状单体与烯类单体的共聚反应 ,均为无规共聚 ,而且是普通自由基引发聚合 ,不能控制分子量 ,分子量分布很宽 .原子转移自由基聚合是近几年发展起来的实现…  相似文献   

9.
可控/“活性”自由基聚合(CLRP)可以用于制备分子量分布窄、分子链缺陷少的聚合物,如聚乙烯(PE)、聚氯乙烯(PVC)、聚偏氯乙烯(PVDC)和聚偏氟乙烯(PVDF),且易控制上述单体与其他单体共聚得到嵌段聚合物。本文调研了近年来可控/“活性”自由基聚合(如碘转移聚合(ITP)、氮氧稳定自由基聚合(NMP)、可逆加成断裂链转移(RAFT)聚合和金属催化的活性自由基聚合(OMRP)等)制备聚乙烯和聚卤代烯烃等方面的工作,并指出了未来的发展方向。  相似文献   

10.
自从Matyjaszewski等[1,2 ] 发现原子转移自由基聚合 (ATRP)以来 ,寻求新的双多官能引发剂是该领域的重要研究方向之一[3~ 7] .2 0 0 0年 ,我们[8]曾报道了α ,α 二溴乙酸乙酯可作为丙烯酸酯ATRP的双官能引发剂 ,并基于其两端增长的活性聚合性质合成了PS b PBA b PS和PMMA b PBA b PMMA两种三嵌段共聚物 .与此同时 ,Hocker等[9] 通过比较氯化苄与α ,α 二氯甲苯引发的苯乙烯ATRP的聚合速度 ,认为α ,α 二氯甲苯是苯乙烯ATRP的双官能引发剂 .当我们参照上述结果 ,用α ,α 二…  相似文献   

11.
丙烯腈可控/"活性"自由基聚合研究进展   总被引:4,自引:0,他引:4  
可控/"活性"自由基聚合能有效控制聚合物的分子量及其分布,并且能调控其微观拓扑结构。聚丙烯腈及其共聚物具有良好的成纤成膜性能,是一类应用十分广泛的聚合物。本文综述了可控/"活性"自由基聚合法合成聚丙烯腈及其共聚物的研究现状与进展,从氮氧自由基法(NMP)、引发转移终止剂法(iniferter)、原子转移自由基聚合(ATRP)和可逆加成-断裂链转移(RAFT)聚合等方面对丙烯腈均聚物和共聚物的合成研究作了全面的总结,提出了存在的问题,并且对今后的研究方向作了展望。  相似文献   

12.
The sterically hindered, 1,1‐disubstituted monomers di‐n‐butyl itaconate (DBI), dicyclohexyl itaconate (DCHI), and dimethyl itaconate (DMI) were polymerized with reversible addition–fragmentation chain transfer (RAFT) free‐radical polymerization and atom transfer radical polymerization (ATRP). Cumyl dithiobenzoate, cumyl phenyl dithioacetate, 2‐cyanoprop‐2‐yl dithiobenzoate, 4‐cyanopentanoic acid dithiobenzoate, and S‐methoxycarbonylphenylmethyl dithiobenzoate were employed as RAFT agents to mediate a series of polymerizations at 60 °C yielding polymers ranging in their number‐average molecular weight from 4500 to 60,000 g mol?1. The RAFT polymerizations of these hindered monomers displayed hybrid living behavior (between conventional and living free‐radical polymerization) of various degrees depending on the molecular structure of the initial RAFT agent. In addition, DCHI was polymerized via ATRP with a CuCl/methyl benzoate/N,N,N′,N″,N″‐pentamethyldiethylenetriamine/cyclohexanone system at 60 °C. Both the ATRP and RAFT polymerization of the hindered monomers displayed living characteristics; however, broader than expected molecular weight distributions were observed for the RAFT systems (polydispersity index = 1.15–3.35). To assess the cause of this broadness, chain‐transfer‐to‐monomer constants for DMI, DBI, and DCHI were determined (1.4 × 10?3, 1.3 × 10?3, and 1.0 × 10?3, respectively) at 60 °C. Simulations carried out with the PREDICI program package suggested that chain transfer to monomer contributed to the broadening process. In addition, the experimental results indicated that viscosity had a pronounced effect on the broadness of the molecular weight distributions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3692–3710, 2006  相似文献   

13.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

14.
Living radical polymerizations of diisopropyl fumarate (DiPF) are carried out to synthesize poly(diisopropyl fumarate) (PDiPF) as a rigid poly(substituted methylene) and its block copolymers combined with a flexible polyacrylate segment. Reversible addition‐fragmentation chain transfer (RAFT) polymerization is suitable to obtain a high‐molecular‐weight PDiPF with well‐controlled molecular weight, molecular weight distribution, and chain‐end structures, while organotellurium‐mediated living radical polymerization (TERP) and reversible chain transfer catalyzed polymerization (RTCP) give PDiPF with controlled chain structures under limited polymerization conditions. In contrast, controlled polymerization for the production of high‐molecular‐weight and well‐defined PDiPF is not achieved by atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP). The block copolymers consisting of rigid poly(substituted methylene) and flexible polyacrylate segments are synthesized by the RAFT polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2136–2147  相似文献   

15.
We report on the controlled‐radical polymerization of the photocleavable o‐nitrobenzyl methacrylate (NBMA) and o‐nitrobenzyl acrylate (NBA) monomers. Atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer polymerization (RAFT), and nitroxide‐mediated polymerization (NMP) have been evaluated. For all methods used, the acrylate‐type monomer does not polymerize, or polymerizes very slowly in a noncontrolled manner. The methacrylate‐type monomer can be polymerized by RAFT with some degree of control (PDI ∼ 1.5) but leading to molar masses up to 11,000 g/mol only. ATRP proved to be the best method since a controlled‐polymerization was achieved when conversions are limited to 30%. In this case, polymers with molar masses up to 17,000 g/mol and polydispersity index as low as 1.13 have been obtained. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6504–6513, 2009  相似文献   

16.
Densely grafted copolymers were synthesized using the “grafting from” approach via the combination of reversible addition‐fragment chain transfer polymerization (RAFT) and atom transfer radical polymerization (ATRP). First, a novel functional monomer, 2,3‐di(2‐bromoisobutyryloxy)ethyl acrylate (DBPPA), with two initiating groups for ATRP was synthesized. It was then polymerized via RAFT polymerization to give macroinitiators for ATRP with controlled molecular weights and narrow molecular weight distributions. Last, ATRP of styrene was carried out using poly(DBPPA)s as macroinitiators to prepare comblike poly(DBPPA)‐graft‐polystyrenes carrying double branches in each repeating unit of backbone via “grafting from” approach. Furthermore, poly(DBPPA)‐graft‐[polystyrene‐block‐poly(t‐BA)]s and their hydrolyzed products poly(DBPPA)‐graft‐[polystyrene‐block‐poly(acrylic acid)]s were also successfully prepared. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 362–372, 2008  相似文献   

17.
The synthesis of statistical and block copolymers, consisting of monomers often used as resist materials in photolithography, using reversible addition‐fragmentation chain transfer (RAFT) polymerization is reported. Methacrylate and acrylate monomers with norbornyl and adamantyl moieties were polymerized using both dithioester and trithiocarbonate RAFT agents. Block copolymers containing such monomers were made with poly(methyl acrylate) and polystyrene macro‐RAFT agents. In addition to have the ability to control molecular weight, polydispersity, and allow block copolymer formation, the polymers made via RAFT polymerization required end‐group removal to avoid complications during the photolithography. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 943–951, 2010  相似文献   

18.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

19.
Polystyrene-block-poly(5,6-benzo-2-methylene-1,3-dioxepane) (PSt-b-PBMDO), poly(methyl methacrylate)-block-PBMDO (PMMA-b-PBMDO) and poly(methyl acrylate)-block-PBMDO (PMA-b-PBMDO) were synthesized by two-step atom transfer radical polymerization (ATRP) of conventional vinyl monomers, then BMDO. First, the polymerization of St, or MMA, or MA was realized by ATRP with ethyl α-bromobutyrate (EBrB) as initiator in conjunction with CuBr and 2,2-bipyridine (bpy). After isolation, polymers with terminal bromine, PSt-Br, PMMA-Br and PMA-Br, were obtained. Second, the ATRP of BMDO was performed by using macroinitiator, PSt-Br (or PMMA-Br, PMA-Br) in the presence of CuBr/bpy. The structures of block copolymers were characterized by 1H NMR spectra. Molecular weight and polydispersity index were determined on gel permeation chromatograph. Among the block copolymers obtained, PMA-b-PBMDO shows the most narrow molecular weight distribution.  相似文献   

20.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号