首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
金属铜表面的三维齿状图形的化学微加工   总被引:3,自引:0,他引:3  
金属铜表面的三维齿状图形的化学微加工;约束刻蚀剂层技术(CELT);化学刻蚀  相似文献   

2.
应用约束刻蚀剂层技术(CELT)对GaAs进行电化学微加工. 研究了刻蚀溶液体系中各组成的浓度比例、GaAs类型、掺杂以及阳极腐蚀过程对GaAs刻蚀加工过程的影响. 循环伏安实验表明, Br-可以通过电化学反应生成Br2作为刻蚀剂, L-胱氨酸可作为有效的捕捉剂. CELT中刻蚀剂层被紧紧束缚于模板表面, 模板和工件之间的距离小于刻蚀剂层的厚度时, 刻蚀剂可以对GaAs进行加工. 利用表面具有微凸半球阵列的导电模板, 可以在不同类型GaAs上加工得到微孔阵列. 实验结果表明: 在相同刻蚀条件下, GaAs的加工分辨率与刻蚀体系中各组分的浓度比例有关, 刻蚀结构的尺寸随着刻蚀剂与捕捉剂浓度比的增加而增大; 在加工过程中, p-GaAs相对于n-GaAs和无掺杂GaAs受到阳极氧化过程的影响较为显著, p-GaAs表面易生成氧化物层, 影响电化学微加工过程. X射线光电子能谱(XPS)和极化曲线实验也证明了这一点.  相似文献   

3.
利用微圆盘电极技术, 测定了KBr、L-胱氨酸和硫酸组成的刻蚀溶液体系中Pt电极表面电化学氧化产生的刻蚀剂Br2浓度分布, 为约束刻蚀剂层技术(CELT)中刻蚀体系的选择和优化提供更直观的依据. GaAs表面CELT微加工实验证明了用微圆盘电极测得的表面刻蚀剂的浓度分布趋势与微加工实验所得到的结果一致  相似文献   

4.
研究了镁合金的约束刻蚀微加工方法. 通过对电解过程中电极表面氢离子浓度变化以及刻蚀体系对镁合金的腐蚀速率的测量与分析, 对一些可能有刻蚀作用的刻蚀体系进行了研究. 选用亚硝酸钠作为产生刻蚀剂(硝酸)的前驱体、氢氧化钠作为捕捉剂、少量硅酸钠作为缓蚀剂的约束刻蚀体系, 使用具有规整三维微立方体点阵结构的模板, 在金属镁表面加工出具有与模板互补特性的点阵微结构, 复制加工的分辨率为亚微米级. 并对刻蚀过程机理进行了探讨与分析.  相似文献   

5.
与机械加工相比,电化学加工技术具有无刀具磨损、无热效应、无机械损伤、加工效率高等优点,而且适用于柔性、脆性及超硬材料,具备传统方法难以实现的复杂结构加工能力,因而在航空航天、汽车、微电子等领域有着重要应用,日益成为一种重要的工业制造技术.随着超大规模集成电路(ULSI)、微机电系统(MEMS)、微全分析系统(μ-TAS)、现代精密光学系统等高技术产业的迅速发展,功能性结构/器件的微型化和集成化的要求越来越高.由于传统电化学只适用于金属材料,为了应对微纳制造的时代要求,拓展电化学加工的材料普适性,1992年田昭武院士提出了具有我国自主知识产权的约束刻蚀剂层技术(CELT).一般的,约束刻蚀包括3个步骤:(1)通过电化学、光化学或光电化学的方法在模板电极表面生成刻蚀剂;(2)通过后续的均相化学反应或自由基衰变反应将刻蚀剂约束在微/纳米厚度的液层内;(3)将模板电极逼近加工基底,当约束刻蚀剂层接触被加工基底时,通过刻蚀反应实现微纳加工.最近,联合课题组通过仪器、原理和方法3个方面的努力,引入外部物理场调制技术,实现一维铣削、二维抛光、三维微/纳结构加工,大幅提升了CELT的技术水平.  相似文献   

6.
用规整膜板对砷化镓的三维微结构图形加工刻蚀   总被引:2,自引:0,他引:2  
以微齿轮图形结构作为规整模板 ,用约束刻蚀剂层技术对GaAs样品表面进行了加工刻蚀 .在有捕捉剂H3AsO3存在的情况下 ,规则微齿轮图形能够很好地在样品表面复制 .刻蚀结果与没有捕捉剂存在时的刻蚀结果做了比较 .另外还测试了不同方法制得膜板的性能 ,初步探讨了电化学模板的制作工艺 .  相似文献   

7.
采用约束刻蚀剂层技术, 以亚硝酸钠为先驱物, 通过电化学氧化产生刻蚀剂(硝酸)刻蚀铝, 并以NaOH为捕捉剂, 在电极模板上形成约束刻蚀剂层. 在金属铝表面加工出梯型槽微结构, 加工分辨率约为500 nm. 通过测量表面氢离子浓度, 对捕捉剂的约束效果进行了分析.  相似文献   

8.
祖延兵  孙立宁 《电化学》1997,3(1):11-14
高分辨率刻蚀技术对于微机械及微电子器件的加工具有十分重要的意义,而硅是其中极为重要并占统制地位的材料,近年来,扫描电化学显微镜用于表面加工的研究颇受注目,然而,SECM刻蚀分辨率往往因为刻蚀剂的横向扩散而受到限制。最后,田昭武等提出一种可进行高分辨率微加工的新方法--约束刻蚀剂层技术,可使刻蚀反应具有高度的距离敏感性,刻蚀分辨率得到极大改善。我们利用CELT技术刻蚀硅表面,以60μm及100μm直  相似文献   

9.
金属的电化学微区刻蚀方法   总被引:1,自引:0,他引:1  
本文概述了现行的金属微区刻蚀方法并详细地介绍几种电化学刻蚀方法 ,比较了掩膜法、扫描电化学显微镜法、约束刻蚀剂层法、电化学扫描隧道显微镜法和超短电位脉冲法各自的特点 .从加工精度 (能否进行微米和纳米级加工 )、加工效率 (工序复杂程度 ,能否批量制造或复制 )、可用范围 (主要是能否加工复杂三维立体结构 )等各项因素进行了综合分析 ,结果表明 ,各种加工方法各有其优缺点 ,从总的效果来看 ,约束刻蚀剂层技术在微加工方面具有较大优势  相似文献   

10.
对现有的软刻蚀方法提出了改进,让其与压印技术及毛细力刻蚀技术相结合形成一种薄层软刻蚀技术,并以这种技术制备出PMMA薄膜微图案化结构.在30 mm/h的拉膜速度以及弹性印章表面图形深度确定不变的情况下,PMMA流体能够完全填充到弹性印章的微通道中,SEM和光学显微镜照片证明得到的PMMA微图案是相互分离的.因此,薄层软刻蚀技术可以克服普通微模塑方法制备分离图形困难和纳米压印技术中需要使用巨大机械压力的缺点.  相似文献   

11.
Chemical micro-machining of complex 3-dimensional (3-D) patterns of silicon substrates was preliminarily explored by the confined etchant layer technique (CELT). Through systematic investigation, we demonstrated that cysteine as a scavenger and Br2 as an etchant can be used to etch silicon substrates. The CELT has the potential to develop into a new means of micro-machining complex 3-D patterns on silicon substrates. However, due to the highly corrosive property of the chemicals used for the silicon etched system, great effort must be made to overcome these problems including the mold electrode with high chemical stability.Dedicated to Professor Gygy Horyi on the occasion of his 70th birthday  相似文献   

12.
电化学微/纳加工分辨率的影响因素及对策   总被引:1,自引:0,他引:1  
The etching resolution of electrochemical fabrication technique is influenced significantly by the diffusion layer of the etchant. It has been shown that a fast etching rate can achieve higher etching resolution due to so-called heterogeneous scavenging effect, while a lower etching rate will result in rather lower etching resolution. For the latter case, the confined etchant layer technique(CELT) has been employed to improve the etching resolution. i. e., a certain redox couple which can consume the etchant homogeneously and rapidly was added to the solution. The homogeneous scavenging effect confined the etchant within a narrow layer around the electrode surface and much improved etching resolution was achieved. Using the CELT and a needle-shaped microelectrode, an etching spot of several micro-meters was obtained at silicon wafer surface.  相似文献   

13.
The confined etchant layer technique has been applied to achieve effective three-dimensional (3D) micromachining on n-GaAs and p-Si. This technique operates via an indirect electrochemical process and is a maskless, low-cost technique for microfabrication of arbitrary 3D structures in a single step. Br(2) was electrogenerated at the mold surface and used as an efficient etchant for n-GaAs and p-Si; l-cystine was used as a scavenger, for both substrates. The resolution of the fabricated microstructure depended strongly on the composition of the electrolyte, and especially on the concentration ratio of l-cystine to Br(-). A well-defined, polished Pt microcylindrical electrode was employed to examine the deviation of the size of the etched spots from the real diameter of the microelectrode. The thickness of the confined etchant layer can be estimated, and thus the composition of the electrolyte can be optimized for better etching precision. The etched patterns were approximately negative copies of the mold, and the precision of duplication could reach the micrometer level for p-Si and the submicrometer level for n-GaAs. Although the same etchant (Br(2)) and scavenger (l-cystine) were used in the etching solutions for GaAs and Si, the etching process, or mechanism, is completely different in the two cases. Compared with the fast etching process on GaAs in an etching solution with a concentration ratio of 3:1 of l-cystine to Br(-), the concentration ratio needs to be 50:1 for etching of Si. For the micromachining of Si, the addition of a cationic surfactant (cetyltrimethylammonium chloride, CTACl) is necessary to reduce the surface tension of the substrate and hence reduce the influence of evolution of the byproduct H(2). The function of the surfactant CTACl in comparison with an anionic surfactant (sodium dodecyl sulfate) was studied in contact-angle experiments and micromachining experiments and then is discussed in detail.  相似文献   

14.
By introducing the mechanical motion into the confined etchant layer technique (CELT), we have developed a promising ultra-precision machining method, termed as electrochemical mechanical micromachining (ECMM), for producing both regular and irregular three dimensional (3D) microstructures. It was found that there was a dramatic coupling effect between the confined etching process and the slow-rate mechanical motion because of the concentration distribution of electrogenerated etchant caused by the latter. In this article, the coupling effect was investigated systemically by comparing the etchant diffusion, etching depths and profiles in the non-confined and confined machining modes. A two-dimensional (2D) numerical simulation model was proposed to analyze the diffusion variations during the ECMM process, which is well verified by the machining experiments. The results showed that, in the confined machining mode, both the machining resolution and the perpendicularity tolerance of side faces were improved effectively. Furthermore, the theoretical modeling and numerical simulations were proved valuable to optimize the technical parameters of the ECMM process.  相似文献   

15.
A surface roughening method by simple chemical etching was developed for the fabrication of superhydrophobic surfaces on three polycrystalline metals, namely aluminum, copper, and zinc. The key to the etching technique was the use of a dislocation etchant that preferentially dissolves the dislocation sites in the grains. The etched metallic surfaces, when hydrophobized with fluoroalkylsilane, exhibited superhydrophobic properties with water contact angles of larger than 150 degrees, as well as roll-off angles of less than 10 degrees for 8-microL drops. Also, the dislocation etching concept introduced here may be helpful in the fabrication of superhydrophobic surfaces on other polycrystalline substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号