首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
LaBO3(B=Fe,Co)中氧的迁移与光催化反应活性   总被引:10,自引:0,他引:10  
以柠檬酸法合成的钙钛矿型复合氧化物LaBO3(B=Fe,Co)为催化剂,对水溶性染料进行光催化降解,实验结果表明,其光催化活性与钙钛矿型结构中氧空位沿BO6八面体棱边以曲线而非直线的迁移机制有关.在光催化氧化过程中,光生电子首先被表面氧空位束缚,再与表面的吸附氧反应生成超氧基(O2-·)而加速对染料分子的降解.钙钛矿型复合氧化物中的氧空位是由氧的迁移产生的,它可以作为电子的陷阱而捕俘电子,并作为氧的吸附中心而提高催化剂表面的吸附氧量.  相似文献   

2.
胡龙兴  杨帆  邹联沛  袁航  胡星 《催化学报》2015,(10):1785-1797
由于硫酸根自由基(SO4?-)的强氧化性,基于SO4?-的高级氧化技术受到人们的高度关注.采用过渡金属活化过一硫酸盐(PMS)产生SO4?-用以分解有机物,反应体系简单,反应条件温和,且不需要额外的能量供给,因此,成为人们优先选用的方法,其中,采用高效、环境友好的非均相过渡金属催化剂活化PMS处理难降解有机物成为研究热点.本文研究了非均相CoFe/SBA-15-PMS体系对水中难降解染料罗丹明B(RhB)的降解.以SBA-15为载体, Co(NO3)2·6H2O和Fe(NO3)3·9H2O为前驱物,采用一步等体积浸渍法制备了CoFe/SBA-15,通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、能谱(EDS)、透射电镜(TEM)和振动样品磁强计(VSM)等对其进行了表征.考察了焙烧温度、Co与Fe的负载量对CoFe/SBA-15催化性能的影响和该催化剂的重复使用性能,还考察了RhB降解动力学及催化剂CoFe/SBA-15投加量、氧化剂PMS投加量和反应物(RhB和PMS)初始浓度对其性能的影响,探讨了RhB的降解机理.结果表明:对于催化剂CoFe/SBA-15,合成焙烧后在SBA-15上负载的Fe、Co化合物主要是CoFe2O4复合物,它作为催化剂的活性中心负载在SBA-15的孔道内外.制备的焙烧温度对CoFe/SBA-15催化性能几乎无影响,但对Co浸出影响显著.与SBA-15相比,催化剂10Co9.5Fe/SBA-15-700(Co和Fe负载量分别为10 wt%和9.5 wt%,焙烧温度700 oC)的比表面积、孔体积和孔径均减小,分别为506.1 m2/g,0.669 cm3/g和7.4 nm,但仍然保持SBA-15的有序六方介孔结构.该催化剂以棒状体的聚集态存在,聚集体直径大于0.25μm,其磁化强度为8.3 emu/g,因此,可通过外磁铁容易地从水中分离.相比之下,10Co9.5Fe/SBA-15-700具有最佳的催化性能和稳定性,可使RhB的降解率达到96%以上, Co的浸出量小于32.4μg/L.在CoFe/SBA-15和PMS共存下, RhB的降解符合一级动力学方程, RhB降解速率随CoFe/SBA-15和PMS投加量的增加和初始反应物浓度的减小而提高.淬灭实验结果表明,在CoFe/SBA-15, PMS和RhB水溶液体系中,存在的主要活性自由基为SO4?-,它是由CoFe/SBA-15活化PMS产生的,对RhB的降解起决定性的作用. RhB降解过程的UV-vis结果表明, RhB的降解途径主要是蒽环打开, SO4?-优先攻击RhB的有色芳香烃环,然后RhB进一步分解为小分子有机物. CoFe/SBA-15循环使用10次仍能保持高催化活性和稳定性,在每次反应中RhB的降解率均大于84%, Co和Fe的浸出量均分别小于72.1和35μg/L. CoFe/SBA-15作为高效、环境友好的非均相催化剂可有效地活化PMS产生SO4?-降解水中RhB,具有实际应用的潜力.  相似文献   

3.
张丽娟  王自军  刘源 《分子催化》2012,26(3):204-210
采用共沉淀法制备了Co3O4/Ce0.8Pr0.2O2催化剂,并将其用于乙醇水蒸气重整制氢反应,考察了Co3O4负载量以及Pr掺杂对催化剂性能的影响.采用X射线衍射、程序升温还原、热重分析和透射电子显微镜对催化剂的结构和表面性质进行表征.结果表明,催化剂中部分Co进入到载体的晶格中,使载体发生畸变产生更多的氧空位;载体中Pr掺杂有利于生成更多的氧空位,提高了催化剂的抗积碳性能,同时Pr掺杂可以增强Co3O4与载体之间的相互作用,提高金属Co的抗烧结性能;15%Co3O4/Ce0.8Pr0.2O2催化剂具有最好的催化活性,在反应温度为400℃,空速80 000 mL/(g.h),n(H2O)∶n(EtOH)=3的条件下可将乙醇完全转化;10 h稳定性测试结果表明该催化剂具有较好的稳定性.  相似文献   

4.
采用煅烧法制备了以木质素生物炭为载体的单原子催化剂(Ni-N-C-10), 用于高效活化过硫酸盐(PMS)降解苯酚. 利用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 经球差校正的高角度环形暗场扫描透射电子显微镜(AC-HAADF-STEM)、 X射线粉末衍射仪(XRD)以及X射线光电子能谱仪(XPS)等对材料进行了表征分析, 证明合成了原子分散的催化剂Ni-N-C-10. 探究了制备过程中双氰胺的投加量和降解实验中催化剂投加量、 PMS投加量、 pH值以及温度对苯酚降解的影响. 结果表明, 在催化剂制备过程中, 加入10倍质量比的双氰胺更有利于实现原子分散. Ni-N-C-10/PMS体系在较低的催化剂和PMS投加量、 以及较宽的pH值范围(3~9)内都能有效活化PMS降解苯酚. 此外, 该体系的稳定性好且应用范围广, 除了能高效降解苯酚外还能快速降解双酚A、 四环素和亚甲基蓝. 电子顺磁共振检测和自由基淬灭实验结果表明, Ni-N-C-10/PMS体系降解苯酚为SO4?-、 ·OH和1O2 3种主要活性物种共同作用的结果, 其中1O2起主导作用. 反应前后Ni-N-C-10催化剂的XPS分析结果表明, 催化降解苯酚的效率与Ni位点呈正相关.  相似文献   

5.
柴油机排放的碳烟颗粒对人类和自然产生了严重的威胁,开发高活性低成本的碳烟燃烧催化剂是解决这一问题的关键。本文采用不同煅烧气氛(空气、真空和氮气)成功制备了含有不同浓度氧空位的α-MnO2催化剂(记为M-Air-500,M-Va-500,M-N-500,M-N-450)。M-Va-500和M-N-500催化剂在500 ℃煅烧会失去过多晶格氧,导致晶相结构发生改变,出现Mn3O4相,这与XRD和HRTEM结果一致。XPS和Soot-TPR的结果说明,适量的表面氧空位能够吸附并活化氧气分子,催化剂表面的化学吸附氧提高了催化剂的催化性能。H2-TPR结果说明适量的氧空位能够加快晶格氧的迁移,提高可移动氧物种丰度,增强催化剂的氧化能力。结合催化活性测试结果可以得出:在保持α-MnO2晶相结构的前提下,氧空位越多,催化剂表面的化学吸附氧越多,催化活性越好。  相似文献   

6.
超声共沉淀法制备纳米结构LaNiO3及其性质   总被引:13,自引:0,他引:13  
使用超声共沉淀法制备了LaNiO3复合氧化物纳米催化剂,研究了共沉淀过程中超声波对LaNiO3结构性质和催化活性的影响.X射线衍射分析(XRD)、表面吸附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、程序升温还原(TPR)和活性评价等表征.结果表明, 在共沉淀过程中施加超声波辐照,可以使LaNiO3复合氧化物的粒径减小,比表面积增加,表面晶格氧空位增加, 表面吸附氧种增加, 使LaNiO3催化剂的表面氧种活化, 表面氧与体相晶格氧的比例增加, 使LaNiO3催化剂的催化活性增加.探讨了超声波作用的机理.  相似文献   

7.
用一步合成自组装法制备出了氢氧化钴与还原氧化石墨烯(Co(OH)2/rGO)的复合催化剂,并将其用于水中染料的催化降解实验. 通过X射线衍射(XRD),激光拉曼(Raman)光谱,透射电镜(TEM),X射线能量色散谱(EDS)以及X射线光电子能谱(XPS)等一系列分析手段对催化剂的结构形貌进行了详细的表征,表征结果证实氢氧化钴很好地附着在还原石墨烯的表面. 最后初步考察了催化剂催化单过硫酸钾(PMS)降解酸性橙(AO7)的性能. 结果表明,催化剂显示出了高效的催化性能,酸性橙的色度可在12 min内完全去除,总有机碳(TOC)实验也表明染料降解的同时也可获得较高的矿化度. 循环稳定性实验表明在进行到第三次实验时,催化剂仍能保持高的催化活性,将酸性橙在16 min内降解完毕.  相似文献   

8.
由于硫酸根自由基(SO·-4)的强氧化性,基于SO·-4的高级氧化技术受到人们的高度关注.采用过渡金属活化过一硫酸盐(PMS)产生SO·-4用以分解有机物,反应体系简单,反应条件温和,且不需要额外的能量供给,因此,成为人们优先选用的方法,其中,采用高效、环境友好的非均相过渡金属催化剂活化PMS处理难降解有机物成为研究热点.本文研究了非均相CoFe/SBA-15-PMS体系对水中难降解染料罗丹明B(RhB)的降解.以SBA-15为载体,Co(NO3)2·6H2O和Fe(NO3)3·9H2O为前驱物,采用一步等体积浸渍法制备了CoFe/SBA-15,通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、能谱(EDS)、透射电镜(TEM)和振动样品磁强计(VSM)等对其进行了表征.考察了焙烧温度、Co与Fe的负载量对CoFe/SBA-15催化性能的影响和该催化剂的重复使用性能,还考察了RhB降解动力学及催化剂CoF e/SBA-15投加量、氧化剂PMS投加量和反应物(Rh B和PMS)初始浓度对其性能的影响,探讨了Rh B的降解机理.结果表明:对于催化剂CoFe/SBA-15,合成焙烧后在SBA-15上负载的Fe、Co化合物主要是CoFe2O4复合物,它作为催化剂的活性中心负载在SBA-15的孔道内外.制备的焙烧温度对Co Fe/SBA-15催化性能几乎无影响,但对Co浸出影响显著.与SBA-15相比,催化剂10Co9.5Fe/SBA-15-700(Co和Fe负载量分别为10 wt%和9.5 wt%,焙烧温度700 oC)的比表面积、孔体积和孔径均减小,分别为506.1 m2/g,0.669 cm3/g和7.4 nm,但仍然保持SBA-15的有序六方介孔结构.该催化剂以棒状体的聚集态存在,聚集体直径大于0.25μm,其磁化强度为8.3 emu/g,因此,可通过外磁铁容易地从水中分离.相比之下,10Co9.5Fe/SBA-15-700具有最佳的催化性能和稳定性,可使Rh B的降解率达到96%以上,Co的浸出量小于32.4μg/L.在CoFe/SBA-15和PMS共存下,RhB的降解符合一级动力学方程,Rh B降解速率随CoFe/SBA-15和PMS投加量的增加和初始反应物浓度的减小而提高.淬灭实验结果表明,在Co Fe/SBA-15,PMS和RhB水溶液体系中,存在的主要活性自由基为SO·-4,它是由CoFe/SBA-15活化PMS产生的,对RhB的降解起决定性的作用.RhB降解过程的UV-vis结果表明,RhB的降解途径主要是蒽环打开,SO·-4优先攻击RhB的有色芳香烃环,然后RhB进一步分解为小分子有机物.CoF e/SBA-15循环使用10次仍能保持高催化活性和稳定性,在每次反应中RhB的降解率均大于84%,Co和Fe的浸出量均分别小于72.1和35μg/L.CoFe/SBA-15作为高效、环境友好的非均相催化剂可有效地活化PMS产生SO·-4降解水中RhB,具有实际应用的潜力.  相似文献   

9.
近几年过一硫酸盐(PMS)活化技术备受关注,其中利用太阳能活化PMS具有可持续和环保的优势,但PMS本身不吸收可见光.因此,本文提出利用具有可见光响应的石墨相氮化碳(g-C3N4)激发产生光电子进而活化PMS.首先利用三聚氰胺前驱体通过热缩聚法制备g-C3N4,通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见光漫反射(UV-Vis)、荧光光谱(PL)、透射电镜(TEM)、N2吸附脱附测试(BET)、电化学等一系列方法对g-C3N4进行表征,研究其表面性质及光学性能.结果显示, g-C3N4具有典型的片层结构和可见光活性,禁带宽度为2.7 e V.本文选取光惰性的内分泌干扰物邻苯二甲酸二甲酯(DMP)为目标污染物,系统地研究了其降解动力学和降解机理.研究发现,在短波紫外光(254和300nm)照射下,直接光解和·OH参与的反应机理能实现DMP的光降解,而在可见光照射下g-C3N4介导的光催化过程不能使DMP分解;但当添加PMS时,体系主导自由基由·O2–转化为SO4·–和·OH,从而实现DMP的有效降解和矿化.研究还发现,高浓度的PMS和高剂量的g-C3N4均可以提高PMS的活化量和相应的DMP降解效率,但提高催化剂剂量的方式能更充分的利用PMS.尽管高浓度的DMP阻碍了PMS和光催化剂g-C3N4的有效接触,但可以提高PMS的利用率.当p H低于零电荷点(5.4)时, DMP的降解效率较高.此外,使用两种淬灭剂(乙醇和叔丁醇)与DMP进行竞争性实验,结合电子自旋共振检测,表明SO4·–和·OH都是体系主要的自由基.此外,还对g-C3N4的可持续性能进行考察,四次循环实验结果显示,该催化剂具有良好的可重复利用性.对DMP降解进行总有机碳测定,发现降低了19%.最后,利用液相色谱质谱联用对DMP降解产物进行定性定量分析,发现DMP主要通过SO4·–和·OH对苯环的攻击以及脂肪族链的氧化断键这两种途径进行降解.综上可见,利用可见光激发g-C3N4产生的光电子能有效活化PMS降解顽固型有机污染物,可为实现太阳能活化PMS技术提供有力的技术参考.  相似文献   

10.
运用溶胶-凝胶法同步获得了LaCoO3钙钛矿晶格结构内Mg2+的掺杂改性及晶格结构外MgO的异质结复合改性。观察到了同步改性后LaCoO3催化剂上水体罗丹明B(RhB)光催化降解活性的显著提升,相同实验条件下最适Mg含量改性LaCoO3上RhB的降解率从原始LaCoO3的58%显著提升至98%,表观一级动力学常数为改性前催化剂的4.5倍。运用X射线衍射(XRD)、氮气低温吸附-脱附(BET法)、扫描及透射电子显微镜(SEM,TEM)、傅里叶变换红外光谱(FT-IR)、X光电子能谱(XPS)、紫外-可见漫反射(DRS)及光致发光光谱(PL)等分析和表征系统探讨了改性前后催化剂的理化特征。结果表明,约10% Co3+晶格结点可为Mg2+掺杂取代而LaCoO3钙钛矿结构基本保持不变,适量Mg2+对Co3+的掺杂取代可形成晶格畸变和杂质能级、衍生Co4+及促进溶氧吸附从而有利于RhB的光催化降解,过量掺杂的Mg则可能成为光生载流子复合中心从而不利于RhB的去除。适量MgO异质结复合改性LaCoO3一方面赋予复合催化剂较大表面积,利于RhB富集,也赋予丰富的表面羟基利于光生电子的捕获并衍生活性羟基自由基;另一方面还可能通过LaCoO3与MgO异质结间电子的跃迁和流动以及晶格氧空位抑制光生载流子的复合,提高复合催化剂的光量子效率。  相似文献   

11.
《中国化学快报》2022,33(8):3829-3834
Peroxymonosulfate (PMS) activation in heterogeneous processes is a promising water treatment technology. Nevertheless, the high energy consumption and low efficiency during the reaction are ineluctable, due to electron cycling rate limitation. Herein, a new strategy is proposed based on a quantum dots (QDs)/PMS system. Co-ZnS QDs are synthesized by a water phase coprecipitation method. The inequivalent lattice-doping of Co for Zn leads to the generation of surface sulfur vacancies (SVs), which modulates the surface of the catalyst to form an electronic nonequilibrium surface. Astonishingly, the plasticizer micropollutants can be completely degraded within only tens of seconds in the Co-ZnS QDs/PMS system due to this type of surface modulation. The interfacial reaction mechanism is revealed that pollutants tend to be adsorbed on the cobalt metal sites as the electron donors, where the internal electrons of pollutants are captured by the metal species and transferred to the surface SVs. Meanwhile, PMS adsorbed on the SVs is reduced to radicals by capturing electrons, achieving effective electron recovery. Dissolved oxygen (DO) molecules are also easily attracted to catalyst defects and are reduced to O2??, further promoting the degradation of pollutants.  相似文献   

12.
An effective and recoverable CuFe2O4@GO catalyst for PMS activation was synthesized and the underlying catalytic mechanism was revealed in this study.  相似文献   

13.
光催化合成氨是一种绿色节能的合成氨技术,设计制造丰富的表面氧空位和异质结构是促进氮分子活化和抑制电子-空穴复合的重要方法。我们以乙二醇作为还原剂,采用溶剂热法制备合成了Fe2O3/ZnO光催化剂,利用X射线衍射(XRD)、透射电镜(TEM)、电子顺磁共振(EPR)、紫外-可见漫反射(UV-Vis DRS)、荧光光谱(PL)及光电流(PC)对Fe2O3/ZnO催化剂进行表征,并考察了Fe2O3/ZnO催化剂在常温、常压下的光催化合成氨的性能。4%Fe2O3/ZnO催化剂在无牺牲剂下用于光催化合成氨,有较好的光催化效率和稳定性,其合成氨效率达到2059μmol·L-1·g-1·h-1。其高催化效率归因于:可见光区域吸收的提高、氮分子在表面氧空位与Fe3+活性中心上的协同活化及光生电子与空穴的高分离效率。  相似文献   

14.
《中国化学快报》2019,30(12):2216-2220
Recently, heterogeneous activation of peroxymonosulfate (PMS) to oxidatively degrade organic pollutants has been a hotspot. In the present work, copper ferrite-graphite oxide hybrid (CuFe2O4@GO) was prepared and used as catalyst to activate PMS for degradation of methylene blue (MB) in aqueous solution. A high degradation efficiency (93.3%) was achieved at the experimental conditions of 20 mg/L MB, 200 mg/L CuFe2O4@GO, 0.8 mmol/L PMS, and 25 °C temperature. Moreover, CuFe2O4@GO showed an excellent reusability and stability. The effects of various operational parameters including pollutant type, solution pH, catalyst dosage, PMS dosage, pollutant concentration, temperature, natural organic matter (NOM), and inorganic anions on the catalytic degradation process were comprehensively investigated and elucidated. The further mechanistic study revealed the Cu(II)/Cu(I) redox couple on CuFe2O4@GO played the dominant role in PMS activation, where both hydroxyl and sulfate radicals were generated and proceeded the degradation of pollutants. In general, CuFe2O4@GO is a promising heterocatalyst for PMS-based advanced oxidation processes (AOPs) in wastewater treatment.  相似文献   

15.
《中国化学快报》2023,34(6):107893
Rational regulation of stable graphitic carbon nitride (CN) for superior peroxymonosulfate (PMS) activation is important in the catalytic degradation of water contaminants. In this work, the copper oxide and oxygen co-doped graphitic carbon nitride (CuO/O-CN) was prepared via one-step synthesis and applied in activating PMS for oxytetracycline (OTC) degradation, displaying superior catalytic performance. Systematic characterization and theoretical calculations indicated that the synergistic effect between the oxygen site of CN and CuO can modulate the electronic structure of the whole composite further facilitating the formation of non-radical 1O2 and various reactive radicals. Results of the influencing factor experiments revealed that CuO/O-CN has a strong resistance to the environmental impact. The degradation efficiency of OTC in the real water environment even exceeded that in the deionized water. After four successive runs of the optimal catalyst, the OTC removal rate was still as high as 91.3%. This work developed a high-efficiency PMS activator to remove refractory pollutants via both radical pathway and non-radical pathway, which showed a promising potential in the treatment of wastewaters.  相似文献   

16.
采用69 ℃饱和水蒸气和H2混合气, 于927 ℃下处理金红石型TiO2, 得到不同氧缺位的光催化剂, 并用X射线衍射(XRD)、比表面(BET)、电子顺磁共振(EPR)、紫外-可见漫反射(DRS)、光电子能谱(XPS)对其进行了表征. 考察了热处理时间对氧缺位型TiO2光催化分解水析氧活性的影响. 结果表明, 适量的氧缺位能显著提高金红石型TiO2光催化分解水的析氧活性, 其最大析氧速率达222 μmol·L-1·h-1.  相似文献   

17.
Hollow microsphere structure cobalt hydroxide (h-Co(OH)2) was synthesized via an optimized solvothermal-hydrothermal process and applied to activate peroxymonosulfate (PMS) for degradation of a typical pharmaceutically active compound, ibuprofen (IBP). The material characterizations confirmed the presence of the microscale hollow spheres with thin nanosheets shell in h-Co(OH)2, and the crystalline phase was assigned to α-Co(OH)2. h-Co(OH)2 could efficiently activate PMS for radicals production, and 98.6% of IBP was degraded at 10 min. The activation of PMS by h-Co(OH)2 was a pH-independent process, and pH 7 was the optimum condition for the activation-degradation system. Scavenger quenching test indicated that the sulfate radical (SO4? ?) was the primary reactive oxygen species for IBP degradation, which contributed to 75.7%. Fukui index (f ?) based on density functional theory (DFT) calculation predicted the active sites of IBP molecule for SO4? ? attack, and then IBP degradation pathway was proposed by means of intermediates identification and theoretical calculation. The developed hollow Co(OH)2 used to efficiently activate PMS is promising and innovative alternative for organic contaminants removal from water and wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号