首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
吴传德  林祥 《结构化学》2001,20(4):266-269
1 INTRODUCTION Polyoxometalates (POM) are of great interest not only for their structural variety but also their unexpected properties[1,2]. These inorganic anions had been widely investigated as divers as catalysis, biology, medicine, magnetochemistry, and materials science[3~5]. The molybdenum in its higher oxidation states is easy to form poly-nuclear anionic metal-oxygen clusters and many giant poly- molybdates with extraordinary variety of the relevant topology and electronic struct…  相似文献   

2.
1 INTRODUCTION The design and synthesis of polynuclear com- plexes have attracted chemists?attention in the contemporary chemistry, since their clusters maybe lead to novel materials with magnetic, optical, electronic and catalytic properties of the constituent metals[1~3]. It is also prevalently interesting to synthesize high-nuclearity metal complexes for their nanoscopic dimensions[3, 4]. Spectroscopic properties of the lanthanides are widely used in the study of biological systems. …  相似文献   

3.
Gas phase selective catalytic oxidation of toluene to benzaldehyde was studied on V2O5-Ag2O/η-Al2O3 catalyst prepared by impregnation. The catalyst was characterized by XRD, XPS, TEM,and FT-IR. The catalytic results showed that toluene conversion and selectivity for benzaldehyde on catalyst sample No.4 (V/(V Ag)=0.68) was higher than other catalysts with different V/Ag ratios. This was attributed to the higher surface area, larger pore volume and pore diameter of the catalyst sample No.4 than the other catalysts. The XRD patterns recorded from the catalyst before and after the oxidation reaction revealed that the new phases were developed, and this suggested that silver had entered the vanadium lattice. XPS results showed that the vanadium on the surface of No.4 and No.5 sample was more than that in the bulk, thus forming a vanadium rich layer on the surface. It was noted that when the catalyst was doped by potassium promoter, the toluene conversion and selectivity for benzalde hydewere higher than those on the undoped catalyst. This was attributed to the disordered structure of V2O5 lattice of the K-doped catalyst and a better interfacial contact between the particles.  相似文献   

4.
The synthesis and crystal structure of Li3AlB2O6 with different cell parameters are reported and these cells are transformed each other from the confirmation of crystallographic structural analyses. The absorption spectrum, luminescence and lifetimes of the Li3AlB2O6 and LiSrBO3 solid compounds are measured and the comparisons are made between them. It is shown that the absorption edges are at about 400 nm (or band gap 3.1 eV) and there is one of absorption peaks at about 350 nm for the Li3AlB2O6 and LiSrBO3. The emission band (530 nm) makes a red shift and fluorescence decay time (24.39 ns) of the Li3AlB2O6 becomes smaller compared with the emission band (480 nm) and lifetime (93.16 ns) of the LiSrBO3 at the visible region. The transition energies and oscillator strengths of the clusters (Li3AlB2O6)2 and (LiSrBO3)2 lying at low excited states are calculated by the time-dependent Hartree-Fock method. The obtained results are used to model the photophysical properties and discuss the origin of spectral bands of the Li3AlB2O6 and LiSrBO3.  相似文献   

5.
1 INTRODUCTION In the latest ten years, the structure and function of water clusters have captured the interest of chemists. One of the most important study objects in water cluster is to describe the behavior of water so- lution quantitatively at molecule level, which will pave the way for the solving of some environmental and other scientific problems, such as the formation of acid rain and nucleation mechanism of little water drop. Besides, weak interaction in water clusters could be al…  相似文献   

6.
The comparative study of charge effect on the size-dependence stabilities of gold clusters Aunz(n = 2~12, z = 0/±1) in gas phase is performed at the M06-L/Lanl2 dz level. The lowest-energy structures charged by –1, 0 and +1 are optimized. The result shows that the geometries of the clusters with over 7 atoms tend to be cake-like. From the two- to three-dimensional geometries, the oscillatory behaviors are exhibited in the structural and electronic properties with the most pronounced in energy gap. The amplitude for the positive clusters is bigger than both the neutral and negative clusters. The neutral clusters with even number of even-coordinated atoms are more stable than the neighbors with odd number of even-coordinated atoms, as is completely reversed for the charged clusters. The oscillatory behaviors for the charged clusters are opposite to that for the neutral clusters, as is attributed to the electron-paired effect.  相似文献   

7.
V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS) and catalytic removal of ethanol, acetaldehyde and nitrogen oxides at low temperature (<300 ?C) were used to assess the properties of the catalysts. The results showed that the sample with 1wt% vanadium exhibited an excellent catalytic performance for simultaneous removal of ethanol, acetaldehyde and nitrogen oxides. The conversions of ethanol, acetaldehyde and nitrogen oxides at 250 ?C were 100%, 74.4% and 98.7%, respectively. V-Pd/γ-Al2O3-TiO2 catalyst with 1 wt% vanadium showed the largest surface area and higher dispersion of vanadium oxide on the catalyst surface, and possessed a larger mole fraction of V4+ species and unique PdO species on the surface, which can be attributed to the strong synergistic effect among palladium, vanadium and the carriers. The higher activity of V-Pd/γ-Al2O3-TiO2 catalyst is related to the V4+ and Pd2+ species on the surface, which might be favorable for the formation of active sites.  相似文献   

8.
Dimethyl ether(DME) is amongst one of the most promising alternative,renewable and clean fuels being considered as a future energy carrier.In this study,the comparative catalytic performance of the halogenated γ-Al 2 O 3 prepared from two halogen precursors(ammonium chloride and ammonium fluoride) is presented.The impact of ultrasonic irradiation was evaluated in order to optimize both the halogen precursor for the production of DME from methanol in a fixed bed reactor.The catalysts were characterized by SEM,XRD,BET and NH 3-TPD.Under reaction conditions where the temperature ranged from 200 to 400 ℃ with a WHSV = 15.9 h-1was found that the halogenated catalysts showed higher activity at all reaction temperatures.However,the halogenated alumina catalysts prepared under the effect of ultrasonic irradiation showed higher performance of γ-Al 2 O 3 for DME formation.The chlorinated γ-Al 2 O 3 catalysts showed a higher activity and selectivity for DME production than fluorinated versions.  相似文献   

9.
A series of 3. OMo/(Hβ γ-Al2O3) samples with γ-Al2O3 contents in the range of 0-100% (mass fraction) was studied by means of XRD, NH3-TPD, TPR and BET determinations for characterizing their structures. The Hβ zeolite structure in the 3.0Mo/Hβ sample can be effectively stabilized by adding some γ-Al2O3 to Hβ zeolite. γ-Al2O3 mainly favors the formation of polymolybdate or multilayered Mo oxide, while Hβ mainly forms the Al2(MoO4)3 species, as evaluated by the TPR technique. When used as the catalyst for the metathesis of butylene-2 and ethylene to propylene, there exists a close correlation between the specific surface area and stability of the catalyst. The specific surface area of the catalyst shows the maximum when (Hβ γ-Al2O3) contains 30%γ-Al2O3, which is in agreement with that of the time needed for the reaction stablization. In the case of maximum surface area, the rate of coke deposition is the minimum.  相似文献   

10.
The intermolecular clusters of sulfur dioxide with water, SO2(H2O)n (n = 2~5), are studied by using B3LYP density functional theory and MP2 ab initio methods along with the large basis sets (6-311++G(d,p) and aug-cc-pVDZ). The equilibrium geometries, intermolecular binding energies, and anharmonic frequencies of the clusters are calculated and compared with those of pure water clusters and available experiments. SO2 tends to form cyclic hydrogen-bonded complexes with two or three water molecules. In the larger clusters, however, water molecules begin to retain the structure of pure water clusters and segregate from SO2. Infrared absorption assignments for the small clusters are discussed to resolve a possible incorrect assignment in a recent spectroscopic experiment on the clusters.  相似文献   

11.
Hydrothermal reactions of solutions containing a vanadate source, an organodiphosphonate, an organonitrogen component, and HF (V/P/O/F) yield a series of oxyfluorovanadium-diphosphonates with charge-compensation provided by organoammonium cations or hydronium cations. While V/P/O/F networks provide the recurrent structural motif, the linkage between the layers and the details of the polyhedral connectivities within the layers are quite distinct for the five structures of this study. [H2pip][V4F4O2(H2O)2{O3P(CH2)3PO3}2] (1) (pip = piperazine) is a conventional three-dimensional (3D) "pillared" layer structure, whose V/P/O/F networks are buttressed by the propylene chains of the diphosphonate ligands. In contrast, [H2en][V2O2F2(H2O)2{O3P(CH2)4PO3}] (2) and [H2en]2[V6F12(H2O)2{O3P(CH2)5PO3}2 {HO3P(CH2)5PO3H}] (3) are two-dimensional (2D) slablike structures constructed of pairs of V/P/O/F networks sandwiching the pillaring organic tethers of the diphosphonate ligands. Despite the common overall topology, the layer substructures are quite different: isolated {VO5F} octahedra in 2 and chains of corner-sharing {VO(3)F(3)} octahedra in 3. The 3D structure of [H2en]2[V7O6F4(H2O)2{O3P(CH2)2PO3}4].7H2O (4.7H2O) exhibits a layer substructure that contains the ethylene bridges of the diphosphonate ligands and are linked through corner-sharing octahedral {VO6} sites. The connectivity requirements provide large channels that enclose readily removed water of crystallization. The structure of [H3O][V3F2(H2O)2{O3P(CH2)2PO3}2].3.5H2O (5.3.5H2O) is also 3D. Because of the similiarity with 4.7H2O, it exhibits V/P/O/F layers that include the organic tethers of the diphosphonates and are linked through corner-sharing {VO6} octahedra. In contrast to the network substructure of 4.7H2O, which contains binuclear and trinuclear vanadium clusters, the layers of 5.3.5 H2O are constructed from chains of corner-sharing {VO4F2} octahedra. Thermal studies of the open framework materials 4 and 5 reveal that incorporation of fluoride into the inorganic substructures provides robust scaffoldings that retain their crystallinity to 450 degrees C and above. In the case of 4, dehydration does not change the powder X-ray diffraction pattern of the material, which remains substantially unchanged to 450 degrees C. In the case of 5, there are two dehydration steps, that is, the higher temperature process associated with loss of coordinated water. This second dehydration results in structural changes as monitored by powder X-ray diffraction, but this new phase is retained to ca. 450 degrees C. The materials of this study exhibit a range of reduced oxidation states: 1 is mixed valence V(IV)/V(III) while 2 and 4.7H(2)O are exclusively V(IV) and 3 and 5.3.5H2O are exclusively V(III). These oxidation states are reflected in the magnetic properties of the materials. The paramagnetism of 1 arises from the presence of V(III) and V(IV) sites and conforms to the Curie-Weiss law with C = 2.38 em K/(Oe mol) and = -66 K with mu(eff) (300 K) = 4.33 mu(B). Compounds 3-5 exhibit Curie-Weiss law dependence of magnetism on temperature with mu(eff) (300 K) = 5.45 mu(B) for 3 (six V(III) sites), mu(eff) = 4.60 mu(B) for 4 (seven V(IV) sites) and mu(eff) = 4.13 mu(B) for 5 (two V(III) sites). Compound 2 exhibits antiferromagnetic interactions, and the magnetism may be described in terms of the Heisenberg linear antiferromagnetic chain model for V(IV). The effective magnetic moment at 300 K is 2.77 mu(B) (two V(IV) sites).  相似文献   

12.
Hydrothermal reactions of a vanadate source, an appropriate Cu(II) source, bisterpy and an organodiphosphonate, H2O3P(CH2)nPO3H2(n= 1-5), in the presence of HF, yielded a family of materials of the type oxyfluorovanadium/copper-bisterpy/organodiphosphonate. Under similar reaction conditions, variations in diphosphonate tether length n provided the one-dimensional [{Cu2(bisterpy)}V2F2O2{HO3PCH2PO3}{O3PCH2PO3}](1) and [{Cu2(bisterpy)}V2F4O4{HO3P(CH2)2PO3H}](3), the two-dimensional [{Cu2(bisterpy)}V2F2O2(H2O)2{HO3P(CH2)2PO3}2] x 2H2O (2 x 2H2O), [{Cu2(bisterpy)(H2O2}V2F2O2{O3P(CH2)3PO3}{HO3P(CH2)3PO3H}(4) and [{Cu2(bisterpy)}V4F4O4(OH)(H2O){HO3P(CH2)5PO3}{O3P(CH2)5PO3}] x H2O (9 x H2O) and the three-dimensional [{Cu2(bisterpy)}3V8F6O17{HO3P(CH2)3PO3}4]0.8H2O (5 x 0.8H2O), [{Cu2(bisterpy)}V4F2O6{O3P(CH2)4PO3}2](8) and [{Cu2(bisterpy)(H2O)}2V8F4O8(OH)4{HO3P(CH2)5PO3H}2{O3P(CH2)5PO)}3] x 4.8H2O (10 x 4.8H2O). In addition, two members of the oxovanadium/Cu2(bisterpy)/organodiphosphonate family [{Cu2(bisterpy)}V2O4{HO3P(CH2)3PO3}2](6) and [{Cu2(bisterpy)}3V4O8(OH)2{O3P(CH2)3PO3}2{HO3P(CH2)3PO3}2] x 5H2O (7 x 5H2O) cocrystallized from the reaction mixture which provided 5. The overall architectures reveal embedded substructures based on V/P/O(F) clusters, chains, networks, and frameworks. In contrast to the oxovanadium/Cu2(bisterpy)/ organodiphosphonate family, several of the materials of this study also exhibit the direct condensation of vanadium polyhedra to produce binuclear and/or tetranuclear building units.  相似文献   

13.
The hydrothermal reactions of a vanadium source, an appropriate diphosphonate ligand, and water in the presence of HF provide a series of compounds with neutral V-P-O networks as the recurring structural motif. When the {O3P(CH2)(n)PO3}4- diphosphonate tether length n is 2-5, metal-oxide hybrids of type 1, [V2O2(H2O){O3P(CH2)(n)PO3}] x xH2O, are isolated. The type 1 oxides exhibit the prototypical three-dimensional (3-D) "pillared" layer architecture. When n is increased to 6-8, the two-dimensional (2-D) "pillared" slab structure of the type 2 oxides [V2O2(H2O)4{O3P(CH2)6PO3}] is encountered. Further lengthening of the spacer to n = 9 provides another 3-D structure, type 3, constructed from the condensation of pillared slabs to give V-P-O double layers as the network substructure. When organic cations are introduced to provide charge balance for anionic V-P-O networks, oxides of types 4-7 are observed. For spacer length n = 3, a range of organodiammonium cations are accommodated by the same 3-D "pillared" layer oxovanadium diphosphonate framework in the type 4 materials [H3N(CH2)(n)NH3][V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [n = 2, x = 6 (4a); n = 3, x = 3 (4b); n = 4, x = 2 (4c); n = 5, x = 1 (4d); n = 6, x = 0.5 (4e); n = 7, x = 0 (4f)] and [H3NR]y[V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [R = -CH2(NH3)CH2CH3, y = 1, x = 0 (4g); R = -CH3, n = 2, x = 3 (4h); R = -CH2CH3, y = 2, x = 1 (4i); R = -CH2CH2CH3, y = 2, x = 0 (4j); cation = [H2N(CH2CH3)2], y = 2, x = 0 (4k)]. These oxides exhibit two distinct interlamellar domains, one occupied by the cations and the second by water of crystallization. Furthermore, as the length of the cation increases, the organodiammonium component spills over into the hydrophilic domain to displace the water of crystallization. When the diphosphonate tether length is increased to n = 5, structure type 5, [H3N(CH2)2NH3][V4O4(OH)2(H2O){O3P(CH2)5PO3}2] x H2O, is obtained. This oxide possesses a 2-D "pillared" network or slab structure, similar in gross profile to that of type 2 oxides and with the cations occupying the interlamellar domain. In contrast, shortening the diphosphonate tether length to n = 2 results in the 3-D oxovanadium organophosphonate structure of the type 7 oxide [H3N(CH2)5NH3][V3O3{O3P(CH2)2PO3}2]. The ethylenediphosphonate ligand does not pillar V-P-O networks in this instance but rather chelates to a vanadium center in the construction of complex polyhedral connectivity of 7. Substitution of piperazinium cations for the simple alkyl chains of types 4, 5, and 7 provides the 2-D pillared layer structure of the type 6 oxides, [H2N(CH2CH2)NH2][V2O2{O3P(CH)(n)PO3H}2] [n = 2 (6a); n = 4 (6b); n = 6 (6c)]. The structural diversity of the system is reflected in the magnetic properties and thermal behavior of the oxides, which are also discussed.  相似文献   

14.
物材多孔材料广泛应用于吸附、形状和尺寸选择性的多相催化和离子交换.利用有机胺分子的模板和结构导向作用已设计合成了许多沸石分子筛、中孔MCM-41和非致密过渡金属磷酸盐等多孔性氧化料[’-“.过渡金属氧簇结构中普遍存在金属-金属键,业已证明金属氧簇合物具有催化活  相似文献   

15.
1 INTRODUCTION The synthesis of porous and open-framework transition metal phosphates has received great in- terest due to their various compositions and topolo- gyies, as well as their useful properties such as con- trollable size- and shape-selectivity, rigid frame- works and chemical/thermal stability[1]. Of these phosphates constructed from oxometal polyhedra and PO4 tetrahedron, the most interesting is the [MoV6P4X31]n- (X=O, OH) family with the dimen- sionalities ranging from …  相似文献   

16.
1 INTRODUCTION Polyoxometalate anions are a broad class of dis- crete metal-oxide compounds MxOyn–, which are of both fundamental and practical interest in a range of areas, including catalysis, biochemistry, medicine and solid state devices[1~6]. Recently, the structural chemistry of vanadium oxides in combination with secondary metal-ligand cations has attracted much attention[7~17]. These hybrid materials manifest the structural influences both of coordination preferen- ces of the sec…  相似文献   

17.
This paper reports the syntheses and structures of three new copper phosphonates based on 2-pyridylphosphonate, namely, Cu(C(5)H(4)NPO(3)H)2 (1), Cu3(OH)2(C(5)H(4)NPO(3))2.2H2O (2) and Cu(C(5)H(4)NPO(3)) (3). Compound 1 has a discrete dimeric structure in which the {CuO(4)N} square pyramids are linked by the {CPO(3)} tetrahedra through corner-sharing. The dimers are further connected into a chain through hydrogen bonds. In compound 2, edge-sharing {Cu(1)O(4)N} square pyramids and {Cu(2)O(4)} planes are found to form an infinite chain with composition {Cu(3)(mu-OH)(2)(mu-O)(4)}. Neighboring chains are linked by the phosphonate groups of the 2-pyridylphosphonate ligands, resulting in inorganic layers containing 4-, 8- and 12-membered rings. The pyridyl groups and the lattice water molecules occupy the inter-layer space. In compound 3, the {Cu(1)O(4)} and {Cu(2)O(2)N(2)} planes are each corner-shared with the {CPO(3)} tetrahedra, forming an inorganic layer containing 8- and 16-membered rings. The pyridyl groups reside between the layers. Crystal data for 1: space group P(-)1, a = 8.4045(19), b = 8.751(2), c = 10.632(2) A, alpha = 66.673(4), beta = 72.566(4), gamma = 70.690(4) degrees , V = 664.7(2) A(3), Z = 2. Crystal data for 2: space group P2(1)/c, a = 7.9544(17), b = 21.579(4), c = 5.0243(10) A, beta = 105.332(3) degrees , V = 831.7(3) A(3), Z = 2. Crystal data for 3: space group P2(1)/c, a = 4.7793(11), b = 15.319(3), c = 8.6022(19) A, beta = 97.156(4) degrees , V = 624.9(2) A(3), Z = 4. Magnetic measurements reveal that dominant antiferromagnetic interactions are propagated between the copper centers in compounds 1-3. For 3, spin canting is observed with a ferromagnetic transition occurring at 9 K.  相似文献   

18.
The hydrothermal reaction of Na2MoO4·2H2O, SmCl3 in acidified H2O/CH3CN solution gives rise to the title compound as colorless needle crystals, which was characterized by elemental analysis, IR and X-ray single-crystal diffraction techniques. Crystallographic data: Orthorhombic, Pnma, H3Mo3NaO11, Mr. = 489.83, a = 8.411(2), b = 7.566(2), c = 14.359(3) A, V= 913.8(3) A3, Z = 4, De = 3.560 g·cm-3,μ = 4.148 mm-1, F(000) = 912, the final R = 0.0649 and wR = 0.1569 for 1885 observed reflections with I ≥ 2σ (I). The title compound consists of infinite chains built up by distorted {MOO6} octahedra via edge sharing, which are further connected into a three-dimensional framework by sodium ions and protoned water molecules.  相似文献   

19.
1 INTRODUCTION Polyoxomolybdates have been of great interest due to their unique structural varieties, associated multitude of properties and applications as catalysis, medicine and material[1, 2]. One of the most impor- tant aspects is the synthesis and investigation of the materials on polyoxomolybdates containing organo- metallic groups[3~5]. Such materials can provide molecular models for heterogeneous catalysis and display cooperative effects or bifunctional catalytic activity[6]. O…  相似文献   

20.
The title compound, [{Na(H2O)3}2{Ru(dmso)3}2(MoO4)3]·3H2O, has been obstructure was determined by single-crystal X-ray diffraction method. The crystal crystallizes in the triclinic system, space group P1 with a = 12.3333(3), b = 12.6289(3), c = 32.0284(14)(A), α =79.873(7), β = 87.549(9), y = 64.500(4)°, V = 4429.5(2) (A)3, Z = 4, Mr = 1358.85, Dc = 2.038g/cm3, F(000) = 2696 and μ = 1.874 mm-1. The compound contains a novel pentanuclear triangle bipyramidal core, [{ Ru(dmso)3 } 2(MoO4)3]2-, which consists of two { Ru(dmso)3 } 2+ fragments and three {μ2-MoO4}2- units. Furthermore, the dmso ligands bridge the pentanuclear [Ru2Mo3] core and two [Na(H2O)3]+ fragments together, forming a neutral heptanuclear ruthenium- and sodiumcontaining polyoxomolybdate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号