首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The size distribution and molecular structure of water clusters play a critical role in the chemical,biological and atmospheric process.The common experimental study of water clusters in aqueous solution is challenged due to the influence of local H-bonding environments on vibration spectroscopies or vacuum requirements for most mass spectrometry technologies.Here,the time-of-flight secondary ion mass spectrometry(To F-SIMS)combining with a microfluidic chip has been applied to achieve the in-situ discrimination of the size distribution for water clusters in liquid water at room temperature.The results demonstrated that the presented method is highly system stable,reproducible and accurate.The comparison of heavy water with pure water was made to further demonstrate the accuracy of this technique.These results showed that(H_2O)_3H~+ and (D_2O)_4D~+ are the most dominant clusters in pure and heavy water,respectively.This one water molecule difference in the dominant cluster size may due to the nuclear quantum effects on water’s hydrogen bonded network.It is the first time to experimentally show the size distribution of water clusters over a wide range(n=1–30)for pure  相似文献   

2.
The intermolecular clusters of sulfur dioxide with water, SO2(H2O)n (n = 2~5), are studied by using B3LYP density functional theory and MP2 ab initio methods along with the large basis sets (6-311++G(d,p) and aug-cc-pVDZ). The equilibrium geometries, intermolecular binding energies, and anharmonic frequencies of the clusters are calculated and compared with those of pure water clusters and available experiments. SO2 tends to form cyclic hydrogen-bonded complexes with two or three water molecules. In the larger clusters, however, water molecules begin to retain the structure of pure water clusters and segregate from SO2. Infrared absorption assignments for the small clusters are discussed to resolve a possible incorrect assignment in a recent spectroscopic experiment on the clusters.  相似文献   

3.
Molecular dynamics simulations have been carried out for liquid water at 7 different temperatures to understand the nature of hydrogen bonding at molecular level through the investigation of the effects of temperature on the geometry of water molecules. The changes in bond length and bond angle of water molecules from gaseous state to liquid state have been observed, and the change in the bond angle of water molecules in liquid against temperature has been revealed, which has not been seen in literature so far. The analysis of the radial distribution functions and the coordinate numbers shows that, on an average, each water molecule in liquid acts as both receptor and donor, and forms at least two hydrogen bonds with its neigbors. The analysis of the results also indicates that the water molecules form clusters in liquid.  相似文献   

4.
Ionic dissociation of chlorosulfonic acid (HSO3Cl) in the molecular clusters HSO3Cl-(H2O)n (n = 1-4) and HSO3Cl-NH3-(H2O)n (n = 0-3) was investigated by density functional theory and ab initio molecular orbital theory. The equilibrium structures, binding energies, and thermodynamic properties, such as relative enthalpy and relative Gibbs free energy, and were calculated using the hybrid density func- tional (B3LYP) method and the second order M?ller-Plesset approximation (MP2) method with the 6-311 G** basis set. Chlorosulfonic acid was found to require a minimum of three water molecules for ionization to occur and at least one water molecule to protonate ammonia. The corresponding clusters with fewer water molecules were found to be strongly hydrogen-bonded. The related properties and acid strength of chlorosulfonic acid were discussed and compared to the acid strengths of perchloric acid and sulfuric acid in the context of clusters with ammonia and water. The relative stabilities of these clusters were also investigated.  相似文献   

5.
In the present paper,one hundred cluster models NinBP (n=1~6) have been designed and studied by density functional theory (DFT) to get an insight into the local structure,catalytic properties and sulfur resistibility of amorphous alloy Ni-B-P. The configurations in triplet state are found more stable than those in the singlet state. It is found that as the content of Ni in the clusters increases,the value of Fermi level in clusters fluctuated,which shows that the content of Ni can influence the Fermi level to a certain extent. Based on the Fermi level and DOS,we consider the activity of catalyst in hydrogenation reaction is the best in cluster Ni3BP. On the basis of the charge of clusters NinBP (n=1~6),we conclude the amorphous alloy Ni-B-P with high Ni content has better sulfur resistibility and the best hydrogenation activity,strong sulfur resistibility appears in clusters Ni3BP,and the amorphous alloy Ni60B20P20 with similar proportion is expected to prepare in the future.  相似文献   

6.
The comparative study of charge effect on the size-dependence stabilities of gold clusters Aunz(n = 2~12, z = 0/±1) in gas phase is performed at the M06-L/Lanl2 dz level. The lowest-energy structures charged by –1, 0 and +1 are optimized. The result shows that the geometries of the clusters with over 7 atoms tend to be cake-like. From the two- to three-dimensional geometries, the oscillatory behaviors are exhibited in the structural and electronic properties with the most pronounced in energy gap. The amplitude for the positive clusters is bigger than both the neutral and negative clusters. The neutral clusters with even number of even-coordinated atoms are more stable than the neighbors with odd number of even-coordinated atoms, as is completely reversed for the charged clusters. The oscillatory behaviors for the charged clusters are opposite to that for the neutral clusters, as is attributed to the electron-paired effect.  相似文献   

7.
<正> The IR spectra of seven linear Mo-Fe-S clusters have been investigated. The characteristic frequencies VMo-st, VMo-sb, VFe-sb, VFe-spb and VFe-cl were assigned by comparing their vibratiional frequencies with the structural parameters and oxidation states of the metals in these clusters. The assignment of δS-Mo-S was attempted to approach. The influence ofMo atom on Vre-sb in the clusters containing heteronuclear MoS2Fe unit hasbeen discussed. The internal relationship and regularity between the characteristic frequencies and some structural parameters were demonstrated. Final a valuable parameter ΔV, which may be taken as a qualitative estimate of the extent of .Fe →Mo charge transfer in Mo-Fe-S clusters, was proposed.  相似文献   

8.
《结构化学》2020,39(7):1201-1212
Actinide-containing cluster compounds are highly important in radio-and nuclear chemistry. Until three decades ago, little attention had been paid to these heavy-element clusters because of difficulties in their syntheses and characterization as well as handling of these radioactive and chemotoxic elements. In this overview article we have selectively summarized the recent progresses in experimental and theoretical studies on actinide clusters, including actinide(An = Th, Pa, U, Np and Pu) oxide clusters as well as uranyl(UO_2~(2+)) peroxide clusters and so on. It shows that An(Ⅳ)(An = Th, U, Np and Pu) is able to form highly symmetric An~(Ⅳ)_6O_8 core clusters and further merge into larger clusters up to An_(38)O_(56) clusters(An = U, Np and Pu) with the same topology. Meanwhile, An with higher oxidation states such as U(Ⅵ) in uranyl is capable to form fullerene-like peroxide cage clusters of U_(20), U_(60) with the same topology as C_(20) and C_(60). Relativistic quantum chemistry investigations on the geometric structures, electronic structures and chemical bonding patterns have also been briefly summarized herein to provide an understanding on the structural chemistry of these peculiar clusters. The advances in electronic structure studies of actinide clusters help to develop robust theoretical and computational techniques for the future development of actinide cluster chemistry. Further experimental and computational studies of actinide clusters are needed and helpful to accelerate the development of radio-and nuclear chemistry.  相似文献   

9.
管清梅  杨忠志 《中国化学》2007,25(6):727-735
A detailed theoretical investigation on Co^3+ hydration in aqueous solution has been carded out by means of molecular dynamics (MD) simulations based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The effective Co^3+ ion-water potential has been constructed by fitting to ab initio structures and binding energies for ionic clusters. And then the ion-water interaction potential was applied in combination with the ABEEM-7P water model to molecular dynamics simulations of single Co^3+(aq.) solution, managing to reproduce many experimental structural and dynamical properties of the solution. Here, not only the common properties (radial distribution function, angular distribution function and solvation energy) obtained for Co^3+ in ABEEM-7P water solution were in good agreement with those from the experimental methods and other molecular dynamics simulations but also very interesting properties of charge distributions, geometries of water molecules, hydrogen bond, diffusion coefficients, vibrational spectra are investigated by ABEEM/MM model.  相似文献   

10.
Density functional theory(DFT) and coupled cluster theory(CCSD(T)) calculations were employed to investigate the geometric and electronic structures of a range of dinuclear molybdenum sulfide clusters, Mo_2S_n~– and Mo_2S_n(n = 4~8). The results showed that the sulfur atoms tended to occupy the terminal sites of the clusters continuously in the process of sequential sulfidation. After the oxidation state of Mo atoms reached the maximum of +6, diverse disulfur ligands emerged in the sulfur-rich Mo_2S_n~(–/0)(n = 7, 8) clusters. The driving forces of removing a sulfur atom from different S ligands in Mo_2S_n~(–/0)(n = 4~8) clusters, especially from those disulfur units, were evaluated. The corresponding order may provide insight into the pretreatment of fresh MoS_2 catalysts. Vertical detachment energies(VDEs) were predicted according to the Generalized Koopmans' theorem, and then the photoelectron spectra(PES) were simulated. Molecular orbital and spin density values were analyzed to elucidate the chemical bonding and the evolutionary behavior in the dinuclear molybdenum sulfide clusters.  相似文献   

11.
A systematic study on the structure and stability of nitrate anion hydrated clusters, NO3(-) x n H2O (n = 1-8) are carried out by applying first principle electronic structure methods. Several possible initial structures are considered for each size cluster to locate equilibrium geometry by applying a correlated hybrid density functional with 6-311++G(d,p) basis function. Three different types of arrangements, namely, symmetrical double hydrogen bonding, single hydrogen bonding and inter-water hydrogen bonding are obtained in these hydrated clusters. A structure having inter-water hydrogen bonding is more stable compared to other arrangements. Surface structures are predicted to be more stable over interior structures. Up to five solvent H2O molecules can stay around solute NO3(-) anion in structures having an inter-water hydrogen-bonded cyclic network. A linear correlation is obtained for weighted average solvent stabilization energy with the size (n) of the hydrated cluster. Distinctly different shifts of IR bands are observed in these hydrated clusters for different kinds of bonding environments of O-H and N=O stretching modes compared to isolated H2O and NO3(-) anion. Weighted average IR spectra are calculated on the basis of statistical population of individual configurations of each size cluster at 150 K.  相似文献   

12.
采用密度泛函理论B3LYP方法, 在B3LYP/6-311++G(2d,2p)//B3LYP/6-311++G(d,p)基组水平上对乙醇-水分子团簇(C2H5OH(H2O)n (n=1-9))的各种性质进行研究, 如: 优化的几何构型、结构参数、氢键、结合能、平均氢键强度、自然键轨道(NBO)电荷分布、团簇的生长规律等. 结果表明, 从二维(2-D)环状结构到三维(3-D)笼状结构的过渡出现在n=5的乙醇-水分子团簇中. 此外, 利用团簇结合能的二阶差分、形成能、能隙等性质, 发现在n=6时乙醇-水分子团簇的最低能量结构稳定性较好, 可能为幻数结构. 最后, 为了进一步探讨氢键本质, 将C2H5OH(H2O)n (n=2-9)最低能量结构的各种性质与纯水分子团簇(H2O)n (n=3-10)比较, 结果表明前者与后者中的水分子之间氢键相似.  相似文献   

13.
Clusters of Cu (2+)(H 2O) n , n = 6-12, formed by electrospray ionization, are investigated using infrared photodissociation spectroscopy, blackbody infrared radiative dissociation (BIRD), and density functional theory of select clusters. At 298 K, the BIRD rate constants increase with increasing cluster size for n >or= 8, but the trend reverses for the smaller clusters where Cu (2+)(H 2O) 6 is less stable than Cu (2+)(H 2O) 8. This trend in stability is consistent with a change in fragmentation pathway from loss of a water molecule for clusters with n >or= 9 to loss of hydrated protonated water clusters and the formation of the corresponding singly charged hydrated metal hydroxide for n 相似文献   

14.
Geometries and dissociation energies of water molecules on Al(n) (n = 2-25) clusters were investigated using density functional theory with all electron relativistic spin-polarized calculations under the generalized gradient approximation. An extensive structure search was performed to identify the low-energy conformations of Al(n)H(2)O complexes for each size. Optimal adsorption sites were assigned for low-energy isomers of the clusters. Size and site specific dependences were studied for the Al(n)H(2)O complexes in stabilities, geometries, adsorption energies, dissociation energies, Al-O bond lengths, and other characteristic quantities. The stabilities and geometries revealed that H atom in H(2)O is not inclined to bond with Al atoms. The most stable Al(n)H(2)O configurations for each size tend to correspond to the most stable bare Al(n) cluster except of Al(6) and Al(24) clusters. The HO bond lengths increase generally 0.01 ? with respect to the isolated H(2)O in all of the adsorption complexes. The dissociation energy of an isolated H(2)O into HO and H was 5.39 eV, which decreased about two-thirds to the energy range of 0.83-2.12 eV with the help of Al(n) clusters. In spite of the fluctuations, the dissociation energies of Al(n)H(2)O complexes rise with the size increasing as a whole. In addition, we also found that the bare Al(n) clusters with high vertical ionization potentials usually have high dissociation energies of H(2)O in the corresponding adsorption models. The energetically preferred spin-multiplicity of all the odd-n Al(n)H(2)O complexes is doublet, and it is singlet for all the even-n complexes with exception of Al(2)H(2)O which is triplet.  相似文献   

15.
Ab initio and density functional methods have been used to examine the structures and energetics of the hydrated clusters of methane sulfonic acid (MSA), CH3SO3H.(H2O)n (n = 1-5). For small clusters with one or two water molecules, the most stable clusters have strong cyclic hydrogen bonds between the proton of OH group in MSA and the water molecules. With three or more water molecules, the proton transfer from MSA to water becomes possible, forming ion-pair structures between CH3SO3- and H3O+ moieties. For MSA.(H2O)3, the energy difference between the most stable ion pair and neutral structures are less than 1 kJ/mol, thus coexistence of neutral and ion-pair isomers are expected. For larger clusters with four and five water molecules, the ion-pair isomers are more stable (>10 kJ/mol) than the neutral ones; thus, proton transfer takes place. The ion-pair clusters can have direct hydrogen bond between CH3SO3- and H3O+ or indirect one through water molecule. For MSA.(H2O)5, the energy difference between ion pairs with direct and indirect hydrogen bonds are less than 1 kJ/mol; namely, the charge separation and acid ionization is energetically possible. The calculated IR spectra of stable isomers of MSA.(H2O)n clusters clearly demonstrate the significant red shift of OH stretching of MSA and hydrogen-bonded OH stretching of water molecules as the size of cluster increases.  相似文献   

16.
应用ABEEM/MM模型研究水分子团簇(H2O)n (n=11~16)的性质   总被引:3,自引:0,他引:3  
应用ABEEM/MM 模型计算了较大的水分子团簇(H2O)n (n=11~16)的各种性质,如:优化的几何构型, 氢键个数, 结合能, 稳定性, ABEEM 电荷分布, 偶极矩, 以及结构参数、平均氢键个数和强度, 增加的团簇结合能等.结果表明,从立方体结构到笼状结构的过渡出现在n=12的水分子团簇中,随着类似于笼状结构特点的不断增强,五元环的富集程度有所增加.  相似文献   

17.
Various properties (such as optimal structures, structural parameters, hydrogen bonds, natural bond orbital charge distributions, binding energies, electron densities at hydrogen bond critical points, cooperative effects, and so on) of gas phase ethanol–(water)n (n = 1–5) clusters with the change in the number of water molecules have been systematically explored at the MP2/aug‐cc‐pVTZ//MP2/6‐311++G(d,p) computational level. The study of optimal structures shows that the most stable ethanol‐water heterodimer is the one where exists one primary hydrogen bond (O? H…O) and one secondary hydrogen bond (C? H …O) simultaneously. The cyclic geometric pattern formed by the primary hydrogen bonds, where all the molecules are proton acceptor and proton donor simultaneously, is the most stable configuration for ethanol–(water)n (n = 2–4) clusters, and a transition from two‐dimensional cyclic to three‐dimensional structures occurs at n = 5. At the same time, the cluster stability seems to correlate with the number of primary hydrogen bonds, because the secondary hydrogen bond was extremely weaker than the primary hydrogen bond. Furthermore, the comparison of cooperative effects between ethanol–water clusters and gas phase pure water clusters has been analyzed from two aspects. First of all, for the cyclic structure, the cooperative effect in the former is slightly stronger than that of the latter with the increasing of water molecules. Second, for the ethanol–(water)5 and (water)6 structure, the cooperative effect in the former is also correspondingly stronger than that of the latter except for the ethanol–(water)5 book structure. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The Gaussian-3 (G3) model chemistry method has been used to calculate the relative deltaG(o) values for all possible conformers of neutral clusters of water, (H2O)n, where n = 3-5. A complete 12-fold conformational search around each hydrogen bond produced 144, 1728, and 20,736 initial starting structures of the water trimer, tetramer, and pentamer. These structures were optimized with PM3, followed by HF/6-31G* optimization, and then with the G3 model chemistry. Only two trimers are present on the G3 potential energy hypersurface. We identified 5 tetramers and 10 pentamers on the potential energy and free-energy hypersurfaces at 298 K. None of these 17 structures were linear; all linear starting models folded into cyclic or three-dimensional structures. The cyclic pentamer is the most stable isomer at 298 K. On the basis of this and previous studies, we expect the cyclic tetramers and pentamers to be the most significant cyclic water clusters in the atmosphere.  相似文献   

19.
Cobalt-doped gold clusters AunCo (n=1~7) are systematically investigated for the possible stable geometrical configurations and relative stabilities of the lowest-lying isomers using density-functional theory at B3LYP/LanL2DZ level. Several low-lying isomers were deter-mined, and many of them are in electronic configurations with a high spin multiplicity. The results indicate that the ground-state AunCo (n=1~7) clusters adopt a planar structure except for n=7. The stability trend of the AunCo (n=1~7) clusters shows that the Au2Co clusters are magic cluster with high stability.  相似文献   

20.
Hydroperoxide anion (HOO(-)), the conjugate base of hydrogen peroxide (HOOH), has been relatively little studied despite the importance of HOOH in commercial processes, atmospheric science, and biology. The anion has been shown to exist as a stable species in alkaline water. This project explored the structure of gas phase (HOO(-))(H(2)O)(n) clusters and identified the lowest energy configurations for n ≤ 8 at the B3LYP/6-311++G** level of theory and for n ≤ 6 at the MP2/aug-cc-pVTZ level of theory. As a start toward understanding equilibration between HOO(-) and HOOH in an alkaline environment, (HOOH)(OH(-))(H(2)O)(n-1) clusters were likewise examined, and the lowest energy configurations were determined for n ≤ 8 (B3LYP/6-311++G**) and n ≤ 6 (MP2/aug-cc-pVTZ). Some studies were also done for n = 20. The two species have very different solvation behaviors. In low energy (HOOH)(OH(-))(H(2)O)(n-1) clusters, HOOH sits on the surface of the cluster, is 4-coordinated (each O is donor once and acceptor once), and donates to the hydroxide ion. In contrast, in low energy (HOO(-))(H(2)O)(n) clusters, (HOO(-)) takes a position in the cluster center surrounded on all sides by water molecules, and its optimum coordination number appears to be 7 (one O is donor-acceptor-acceptor while the other is a 4-fold acceptor). For n ≤ 6 the lowest (HOOH)(OH(-))(H(2)O)(n-1) cluster lies 1.0-2.1 kcal/mol below the lowest (HOO(-))(H(2)O)(n) cluster, but the lowest clusters found for n = 20 favor (HOO(-))(H(2)O)(20). The results suggest that ambient water could act as a substantial kinetic brake that slows equilibration between (HOOH)(OH(-)) and (HOO(-))(H(2)O) because extensive rearrangement of solvation shells is necessary to restabilize either species after proton transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号