首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
胡传波  厉英  孔亚州  丁玉石 《化学进展》2016,28(8):1238-1250
导电聚合物作为一种新型高分子材料,由于具有可逆的氧化还原特性,在金属腐蚀防护领域具有潜在的应用前景。在众多的导电聚合物中,聚苯胺因其具有独特的抗点蚀、抗划伤和防止海洋生物附着等特殊性能,被广泛应用于金属材料、化学工业和航海航天等领域, 逐渐成为防腐涂料领域的研究热点。本文通过对单一聚苯胺涂层防腐性能不足的分析,系统总结了近年来改性聚苯胺涂层在金属腐蚀防护领域的研究进展,包括单一环取代聚苯胺涂层和N取代聚苯胺涂层、改性聚苯胺复合涂层和改性聚苯胺复合材料/树脂共混复合涂层;通过各种腐蚀测试手段比较了改性聚苯胺涂层与未改性聚苯胺涂层之间防腐性能的优劣,进一步证明了供电子取代基(如烷基、烷氧基和氨基等)能够提高聚苯胺涂层的防腐性能,复合改性或与树脂共混也能够提高聚苯胺及其衍生物涂层的防腐性能;同时展望了聚苯胺及其衍生物涂料未来发展的新趋势。  相似文献   

2.
综述了聚苯胺防腐涂料研究进展;浅析了聚苯胺涂料独特的防腐机理,概述了其防腐应用;指出导电聚苯胺具有可逆的氧化还原特性,对金属具有优良的防腐性能,作为新一代无毒无污染的防腐材料而逐渐成为当前防腐蚀领域的一大热点;并就聚苯胺涂料的防腐发展方向进行了展望.  相似文献   

3.
聚苯胺/分级碳纳米管复合材料的制备与性能研究   总被引:7,自引:2,他引:7  
在众多的导电高分子中,聚苯胺具有原料易得、合成简便、能进行快速与可逆的氧化还原反应、可储存高密度的电荷等优点,在能源、光电子器件、电容器、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术等领域有着诱人的应用前景.近年来,将导电聚苯胺用于超电容器,倍受人们的广泛关注.  相似文献   

4.
聚苯胺是一种具有导电性能的新型高分子材料,将其应用于防腐涂层中可以通过屏蔽和钝化成膜等作用有效延缓金属的腐蚀。本文分析了聚苯胺的性质及防腐机理,并重点介绍了聚苯胺在不同应用体系中防腐性能的表现。  相似文献   

5.
聚苯胺是目前研究最为广泛的导电高分子材料之一,具有特殊的电学、光学性能,在电子工业、信息工程、国防工程等的应用开发进行了深入研究。聚苯胺经掺杂后可形成P型和N型导电态,这种掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,而掺杂度受pH值和电位等因素的影响,且电化学活性同比传统锂电极材料在充放电过程中具有更优异的可逆性能,因此有关在设计聚苯胺参与锂电池电极复合材料的研究也越来越受到重视。本文综述了不同结构聚苯胺锂离子电池复合材料的制备方法,并着重介绍了聚苯胺基复合材料锂离子电池等领域研究的电化学性能,最后展望了聚苯胺基复合材料的应用前景。  相似文献   

6.
聚苯胺水性涂料的制备及其防腐性能   总被引:2,自引:0,他引:2  
将有机磷酸(乙二醇单甲醚磷酸酯和乙二醇单甲醚磷酸二酯混合物)(OP)掺杂得到的导电聚苯胺(PANI-OP)加入到水性环氧树脂(WER)中,制备了聚苯胺水性防腐涂料,并且研究了其防腐蚀性能和防腐蚀机理。 透射电子显微镜观察表明,导电聚苯胺质量分数为0.1%时,其粒径分布范围为50~100 nm。 电化学阻抗谱以及开路电压的变化表明,聚苯胺的存在显著提高了涂层的防腐效果。 金属基底光电子能谱结果表明,聚苯胺水性涂料良好的防腐性能缘于在金属表面生成了致密的氧化物膜以及掺杂剂离子与溶解金属生成了不溶性的盐。  相似文献   

7.
导电聚合物微/纳米结构保留了轻质、类金属电导率和可逆化学和电化学特性,又具有纳米材料的高比表面积、尺寸和量子效应,它在电子器件、储能器件、传感器件等领域具有广泛的技术应用前景。其中,由于聚苯胺的制备方法简单、原料易得和独特的质子酸掺杂和脱掺杂机制,使聚苯胺微/纳米结构的可控制备及其应用研究已成为当前导电聚合物研究的热点...  相似文献   

8.
聚苯胺是一种结构型导电高分子,因其特殊的结构和优异的物理化学性能,使它在二次电池、金属防腐、传感器、电容器、电磁屏蔽及抗静电等领域有着广泛而深入的应用前景。本文概述了导电聚苯胺的结构和特性,主要综述了聚苯胺/橡胶基复合材料的制备方法。其制备方法主要有共混法和聚合法,共混法主要有机械熔融共混法、溶液共混法和乳液共混法;聚合法主要包括电化学聚合、原位乳液聚合法、吸附聚合法等,总结了聚苯胺/橡胶基复合材料的研究情况及发展应用。  相似文献   

9.
聚苯胺纳米复合材料因结合了聚苯胺和纳米粒子的特殊性能,从而改善了基体的物理化学性能,赋予了材料前所未有的独特的性能,成为目前研究最为广泛的导电高分子纳米复合材料之一.本文基于国内外最新研究文献,结合典型事列详细综述了聚苯胺纳米复合材料在生物传感、催化、电磁、微波吸收和光电等方面呈现出的独特性能,简单评述了其在生物传感、催化、电磁、微波吸收、防腐等领域的应用前景.  相似文献   

10.
自1976年发现第一个有机聚合物聚乙炔掺杂后具有类似金属的导电性以来,先后发现了聚吡咯、聚噻吩和聚苯胺(PAn)等导电聚合物,其中聚苯胺以其合成方法简单、稳定性好、较高的电导率及良好的电化学性能等被预言为是最有应用前景的导电高分子材料之一。近年来,随着导电聚合物研究的广泛开展和不断深入,  相似文献   

11.
本文综述了利用多种不同的天然生物分子如蛋白质(包括酶和氨基酸)、糖类、核酸、多巴胺和柠檬汁等为模板合成导电聚苯胺的研究进展。本文首先介绍了这些天然生物分子对产物聚苯胺的手性、导电率、形态以及其它方面性质的影响,归纳了利用天然生物分子合成导电聚苯胺的研究进展,然后分析了导电聚苯胺合成过程中面临的问题并对该领域的未来发展进行了展望,以期为制备性质优良和环境友好的新型导电聚苯胺材料提供有益的参考。  相似文献   

12.
The new carbon material graphdiyne (GDY) has been verified to have a great application prospect in electrochemical field. In order to study its properties and expand its scope of application, various experiments including structural control tests are imposed on GDY. Among them, as one of the most commonly used methods to modify the structure, heteroatom doping is favored for its advantages in synthesis methods and the control of mechanical, electrical and even magnetic properties of carbon materials. According to the published studies, the top-down methods of doping heteroatoms for GDY only need cheap raw materials, simple synthetic route and strong controllability, which is conducive to rapid performance breakthroughs in electrochemical applications. This review selects the typical cases in the development of that post-modification method from the application of GDY in the electrochemical field. Here, based on the existed reports, the commonly used non-metal elements (such as nitrogen, sulfur) and metal elements (such as iron) have been introduced to post-modify GDY. Then, a detailed analysis is made for corresponding electrochemical applications, such as energy storage and electrocatalysis. Finally, the challenges and prospects of post-modified GDY in synthesis and electrochemical applications are proposed. This review provides us a useful guidance for the development of high-quality GDY suitable for electrochemical applications.  相似文献   

13.
Composite material formed from a mesoporous aluminosilicate, Na-AlMCM-41, with conducting polyaniline (PANI) has been synthesized by an in situ polymerization technique. Studies of aniline adsorption over mesoporous Na-AlMCM-41 synthesized in our laboratory allowed us to find the modes in which aniline interacts with the active sites of Na-AlMCM-41. In order to obtain the best reaction conditions to polymerize aniline onto Na-AlMCM-41, aniline was first polymerized to produce pure PANI. Hence, the oxidative in situ polymerization was carried out by two procedures, differing in the polymerization time and in static or stirring conditions. Studies of infrared spectroscopy and UV-vis spectroscopy indicated that higher polymerization time and static conditions allowed us to obtain mainly polyaniline in emeraldine form on the host. The N(2) isotherm of the polyaniline/Na-AlMCM-41 composite (PANI/MCM) indicated that the shape was similar to that of MCM, but the shift to saturation transition to lower partial pressure shows that the channels are occupied by PANI and they are now narrowed. The thermal properties of PANI, Na-AlMCM-41, and composite were investigated by TGA analyses and we found that the polymer shows higher thermal stability when it is forming the composite. Scanning electron microscopy indicated that PANI is not on the outer surface of the host. Conductivity studies show that PANI/Na-AlMCM-41 exhibits semiconductor behavior at room temperature and its conductivity was 7.0 x 10(-5) S/cm, smaller than that of pure polyaniline. PANI/Na-AlMCM-41 conductivity shows an increase as temperature increases. Magnetic measurements at room temperature confirmed that the composite has paramagnetic behavior; at lower temperatures the composite became diamagnetic.  相似文献   

14.
A new and universal synthetic strategy to hybridize metal oxides and conduct polymer nanocomposites has been proposed in this work. The simultaneous reaction process, which includes the generation of metal oxide layers, the oxidation polymerization of monomers, and the in situ formation of polymer–metal oxides sandwich structure is successfully realized and results in the unique hybrid polyaniline (PANI)‐intercalated molybdenum oxide nanocomposites. The peroxomolybdate proved to play a dual role as the precursor of the inorganic hosts and the oxidizing agent for polymerization. The as‐obtained hybrid nanocomposites present a flexible lamellar structure by oriented assembly of conductive PANI chains in the MoO3 interlayer, and thus inherit excellent electrical performance and possess the potential of active electrode materials for electrochemical energy storage. Such uniform lamellar structure together with the anticipated high conductivity of the hybrid PANI/MoO3 nanocomposites afford high specific capacitance and good stability during the charge–discharge cycling for supercapacitor application.  相似文献   

15.
PI/PANI复合材料的制备与表征   总被引:1,自引:0,他引:1  
以纳米聚苯胺为电磁波的吸收剂,高强度、耐高温的聚酰亚胺为基体设计与制备了高强度、耐热、质轻、薄和吸收宽的新型纳米复合吸波材料.利用微乳液法,以十二烷基苯磺酸(DBSA)为乳化剂和掺杂剂,以过硫酸铵(APS)为氧化剂合成了纳米级聚苯胺(PANI).在此基础上,以PANI的NMP溶液为均苯四甲酸二酐(PMDA)与4,4′-二氨基二苯醚(ODA)的聚合场所,室温下,原位聚合出PANI/聚酰胺酸(PAA)复合材料,再经过亚胺化制备出了PANI/PI复合材料.利用XRD表征了聚合物的结晶形态.红外光谱表征了中间体和聚合物.利用场发射扫描电镜发现PANI/PI复合材料呈现海岛结构,PANI像岛屿一样分散在PI的连续相中,两种材料复合并没有破坏各自的结晶形态.利用数字电桥和自制电极表征了不同含量复合材料的损耗性能,当聚苯胺加到3.4%以上时,复合材料的损耗因数提高了,并且随着频率的增大损耗因数直线增大.  相似文献   

16.
This article reports the preparation and self‐assembly of polyaniline (PANI) nanotubes, which were chemically synthesized by using in situ doping polymerization in the presence of ammonium persulfate (APS; (NH4)S2O8) as the oxidant without the use of an external template. The synthesized hierarchically nanotubes with a shape of a single nanotube with a length of 0.6 to 0.8 µm and an average with of 100 nm assembled from nanoparticles. The effects of the [salicylic acid]/[aniline] ratio on the size and capacitance of PANI nanotubes were studied. The specific capacitance behavior of the PANI nanotubes was also investigated by using cyclic voltammogram and galvanostatic charge–discharge tests. A maximum discharge‐specific capacitance of 422.5 F/g could be achieved, suggesting its potential application in electrode material for electrochemical capacitors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The room temperature electrical conductivity of polyaniline (PANI) was found to increase remarkably after it was heated in tetrahydrofuran (THF) with refluxing for a certain period and then doped with methanesulfonic acid (MSA). The enhanced electrical conductivity of PANI was attributed to a partially cross‐linked network generated via the formation of new chemical bonds between adjacent PANI chain segments during thermal treating, which may shorten the inter‐chain distance and facilitate inter‐chain transition of charge carriers in doped PANI. During the refluxing, the moderate dissolving power for PANI as well as a much lower boiling point of THF were considered to have a unique effect on the formation of such partially cross‐linked network in PANI. As a comparison, PANI treated in poor solvents like methanol (or ethanol) and PANI treated in dimethyl formamide (DMF), which is a better solvent than THF but has higher boiling point, did not show an obviously increased electrical conductivity. Study on X‐ray diffraction (XRD) analysis of PANI after refluxing showed that crystallinity decreased gradually with the increase of cross‐linking degree, but the inter‐chain cross‐linking probably occurred first in crystalline region and then in the amorphous region. Electrical conductivity of PANI decreased after it was refluxed with THF for an extended period due to the decreased crystallinity and doping in PANI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The preparation method of a self-supporting doped-polyaniline film electrode and its open-circuit potential (OCP) in NaClO4 and Na2SO4 solutions with different pH value as well as cathodic polarization behavior have been investigated for the purpose of discussing the corrosion electrochemical behavior of polyaniline (PANI) in the acid solution. X-ray photoelectron spectroscopy (XPS) reveals that the lower pH corresponds to higher doping level of H+ in the film and a more positive OCP of PANI film electrode. OCP of the PANI film reached 0.35 V vs. SCE in 1M H2SO4, which is more positive than that of most metals, suggests that PANI would act as cathode when it couples with these metals. The cathodic polarization experiments indicate that the dominating cathodic polarization process of PANI is reversible doping and dedoping reaction and the reduction of dissolve oxygen has very little contribution to it. The potentiostatic current-time curves exhibit a large transient current density at initial stage of polarization, which should be attributed to the charge stored in the film and a relative less steady state current density at the subsequent stage of polarization, which is provided by its doping/dedoping equilibrium activity. Such a current characteristic of PANI electrode might be the force of PANI to provide the passivation protection for some active-passive metals. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 10, pp. 1205–1212. The text was submitted by the authors in English.  相似文献   

19.
In this article, we reported the synthesis, structure and electric field sensitivity of polyacrylate/polyaniline (PAA/PANI) and poly(2-acrylamido-2-methyl propylsulfonic acid-acrylic acid)/polyaniline [P(AMPS-AA)/PANI] conducting hydrogels with an interpenetrating polymer network (IPN) structure. Scanning electron microscope showed that the conducting hydrogels presented porous structures consisting of PANI nanofibers. The results of Fourier-transform infrared and X-ray diffraction revealed that the PANI was in its conductive emeraldine state and partial crystallization. The unique morphology and molecular structure of the conducting hydrogels were expected to show unusual electric field responses. The conducting hydrogels were subjected to an electric field in NaCl solution for bending behaviors. It was demonstrated that the electric field response was improved by increasing aniline dosage, applied voltage and concentration of aqueous NaCl solution. The bending mechanism was attributed to polyelectrolyte hydrogel matrix and emeraldine PANI nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号