首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
高分子量聚苯胺/碳纳米管复合材料的合成与表征   总被引:8,自引:0,他引:8  
在导电聚合物中,聚苯胺(PANI)因其导电性能优良,环境稳定性好,合成工艺简单,原料成本低廉等优点,被认为是最有可能实际应用的导电聚合物.然而用传统方法合成的聚苯胺由于其分子量小,分子链中存在缺陷而使其导电性能和力学性能大大降低,从而限制了其实际应用.而高分子量聚苯胺的导电性能和力学性能比一般聚苯胺有较大的提高.  相似文献   

2.
血红蛋白生物催化合成导电聚苯胺   总被引:1,自引:0,他引:1  
利用血红蛋白在十二烷基磺酸钠阴离子表面活性剂胶束体系中生物催化合成水溶性导电聚苯胺/十二烷基磺酸复合物(PANI/SDS), 讨论了不同反应体系及溶液pH值对聚合反应产物的影响. 结果表明该反应具有明显的pH值依赖性, pH (1.0~4.0)是合成导电聚苯胺所必需的, 其最适pH值为3.0, 聚苯胺由导电的翠绿亚胺盐转变为本征态发生在pH 10.4. 用元素分析法、紫外-可见分光光度法、FT-IR、循环伏安法、粘度测试、电导率测试、热重分析法等对PANI/SDS复合物表征, 结果表明该复合物具有较好的热稳定性和可逆的电化学活性.  相似文献   

3.
可溶性导电聚苯胺的研究进展   总被引:10,自引:0,他引:10  
本文综述了可溶性导电聚苯胺的研究进展,评述了制备水溶性导电聚苯胺的各种方法,指出了水溶性聚苯胺的研究方向。  相似文献   

4.
有序介孔二氧化硅/聚苯胺复合物   总被引:1,自引:0,他引:1  
本文综述了有序介孔二氧化硅/聚苯胺复合物从出现至今的10余年里的研究进展,介绍了复合物的合成方法,包括气相法、液相法和一步合成法,以及模板剂单体原位合成法等。引入苯胺单体后在孔道内聚合生成聚苯胺,即聚苯胺与有序介孔二氧化硅形成了复合物。该复合物的结构和形貌,以及孔道中聚苯胺的结构形态和电学性质,与本体聚苯胺相比具有显著的变化。这种以有序介孔二氧化硅为模板制备的聚苯胺的单分子导线,有潜力应用在新型的电子或光电子器件上。此外,该复合物因为其独特性质很可能在燃料电池的聚合物电解质膜、湿度传感器、电流变材料以及电化学电容器等方面得到应用。  相似文献   

5.
可溶性导聚苯胺的研究进展   总被引:4,自引:0,他引:4  
本文综述了可溶性导电聚苯胺的研究进展,评述了制备水溶性导电聚苯胺的各种方法,指出了水溶性聚苯胺的研究方向。  相似文献   

6.
水基导电聚苯胺及其复合材料   总被引:2,自引:0,他引:2  
由于对离子诱导掺杂技术的发展,聚苯胺在有机溶剂中的加工问题已经得到解决,但日益增长的环保要求使得聚苯胺的水系加工倍受关注.本文通过分析聚苯胺水系加工的研究进展,认为从水溶性导电聚苯胺向水分散性导电聚苯胺转变是未来水基导电聚苯胺的主要发展趋势,水基导电聚苯胺复合材料是解决聚苯胺实际应用问题的主要形式.  相似文献   

7.
复合酸掺杂导电聚苯胺的性能研究   总被引:2,自引:0,他引:2  
以苯胺为单体、过硫酸胺为氧化剂,由化学氧化聚合法在磺基水杨酸和硫酸的复合酸的水溶液中合成导电聚苯胺,并通过压片法、激光粒度分析、扫描电镜、差热分析及红外光谱对掺杂态聚苯胺的电导率、表面形貌及结构进行了研究.结果表明,复合酸掺杂聚苯胺的热稳定性比仅用硫酸掺杂聚苯胺的有了很大的提高;所得导电聚苯胺的粒度分布比较均匀(平均粒径约15.4μm);复合酸掺杂使聚苯胺分子链上的电荷呈离域化,掺杂程度提高.  相似文献   

8.
本综述分两部分,(Ⅰ)为聚苯胺的合成、链结构、掺杂及凝聚态结构。对其发展的各阶段和文献中存在的分歧,作者给出了扼要的评述。(Ⅱ)为聚苯胺的电子现象、导电机理、性质和应用,将在近期发表。  相似文献   

9.
聚苯胺是近年来导电高分子领域的研究热点之一。本文对聚苯胺的电子现象、导电机理、性质和应用研究的现状及发展趋势作一扼要的评述。  相似文献   

10.
导电聚合物由于有很大的应用前景而引起了很多研究者的兴趣。在导电聚合物中,聚苯胺由于具有很高的导电性、热稳定性、容易制备等性质而受到了格外的关注。但是聚苯胺同样有缺点,例如应用范围狭小、很难进行加工等。为了提高聚苯胺的加工性能,乳液聚合是一种有效的改性方法。本文讨论了用乳液聚合或反相乳液聚合合成聚苯胺以及聚苯胺的共聚物,同时也报道了聚苯胺与其它物质复合共混和掺杂的研究结果,并且研究了它们的结构以及各方面的性能。通过改性,可使得聚苯胺的加工性得到很好的改善。  相似文献   

11.
In this article, we reported the synthesis, structure and electric field sensitivity of polyacrylate/polyaniline (PAA/PANI) and poly(2-acrylamido-2-methyl propylsulfonic acid-acrylic acid)/polyaniline [P(AMPS-AA)/PANI] conducting hydrogels with an interpenetrating polymer network (IPN) structure. Scanning electron microscope showed that the conducting hydrogels presented porous structures consisting of PANI nanofibers. The results of Fourier-transform infrared and X-ray diffraction revealed that the PANI was in its conductive emeraldine state and partial crystallization. The unique morphology and molecular structure of the conducting hydrogels were expected to show unusual electric field responses. The conducting hydrogels were subjected to an electric field in NaCl solution for bending behaviors. It was demonstrated that the electric field response was improved by increasing aniline dosage, applied voltage and concentration of aqueous NaCl solution. The bending mechanism was attributed to polyelectrolyte hydrogel matrix and emeraldine PANI nanofibers.  相似文献   

12.
Template guided enzymatic synthesis of conducting polyaniline (PANI) is a one-step reaction and more importantly, it is an environmentally friendly process. Understanding of the reaction and coupling mechanism at the molecular level is of paramount significance to improve its processability and conductivity. Solid-state NMR techniques are useful to investigate molecular structures of enzymatically synthesized polyaniline (PANI). The PANI sample in three different forms i.e., (a) as-synthesized, self-doped conducting form; (b) dedoped, base form and; (c) redoped, conducting form, are investigated by solid-state 13C and 15N CP/MAS NMR techniques. Solid-state NMR data analysis shows that the structural features of enzymatically synthesized PANI are similar to that of chemically synthesized PANI. The solid-state 13C CP/MAS NMR spectrum of the base form of PANI confirmed that benzenoid-quinoid repeating units are present in the backbone of the PANI polymer chain. The poly(vinylphosphonic acid) (PVP) template provides charge compensation during the chain growth of linear polyaniline. After the completion of template-guided synthesis of PANI, it is now possible that the PVP template can be completely removed from the complex by dedoping with aqueous NH4OH. The detached PANI from the PANI-PVP complex can then be redoped to conducting form without the presence of the template. The conductivity of the PANI and PANI-PVP complex are of the same order of magnitude. The solid-state 15N CP/MAS NMR chemical shifts are sensitive to charge distribution on the nitrogens in the backbone. The solid-state 15N CP/MAS NMR spectrum of the base form of the enzymatically derived PANI sample showed the clear signature for benzenoid-quinoid repeating units in the polymer backbone.

  相似文献   

13.
胡兴  邹国林  林敏  赵庆  李湘 《化学学报》2008,66(3):385-390
利用四磺基铁(II)酞菁(FeTSPc)在木质素磺酸钠模板体系中模拟过氧化物酶催化合成导电聚苯胺/木质素磺酸复合物(PANI/LGS)。讨论了溶液pH 值、苯胺浓度、LGS浓度、H2O2浓度及反应时间对FeTSPc催化聚合反应产物的影响。结果表明该反应具有明显的pH值依赖性,pH(1.0~4.0)是合成导电聚苯胺所必须需的,其最适pH值为1.5。用元素分析法、紫外-可见分光光度法、FTIR、循环伏安法、电导率测试、热重分析法等对PANI/LGS复合物表征, 结果表明该复合物具有较好的热稳定性和可逆的电化学活性。  相似文献   

14.
Conducting polymer, polyaniline (PANI), has been studied as a novel electroactive and electrically conductive material for tissue engineering applications. The biocompatibility of the conductive polymer can be improved by (i) covalently grafting various adhesive peptides onto the surface of prefabricated conducting polymer films or into the polymer structures during the synthesis, (ii) co-electrospinning or blending with natural proteins to form conducting nanofibers or films, and (iii) preparing conducting polymers using biopolymers, such as collagen, as templates. In this paper, we mainly describe and review the approaches of covalently attaching oligopeptides to PANI and electrospinning PANI-gelatin blend nanofibers. The employment of such modified conducting polymers as substrates for enhanced cell attachment, proliferation and differentiation has been investigated with neuronal PC-12 cells and H9c2 cardiac myoblasts. For the electrospun PANI- gelatin fibers, depending on the concentrations of PANI, H9c2 cells initially displayed different morphologies on the fibrous substrates, but after one week all cultures reached confluence of similar densities and morphologies. Furthermore, we observed, that conductive PANI, when maintained in an aqueous physiologic environment, retained a significant level of electrical conductivity for at least 100 h, even though this conductivity was decreasing over time. Preliminary data show that the application of micro-current stimulates the differentiation of PC-12 cells. All the results demonstrate the potential for using PANI as an electroactive polymer in the culture of excitable cells and open the possibility of using this material as an electroactive scaffold for cardiac and/or neuronal tissue engineering applications that require biocompatibility of conductive polymers.  相似文献   

15.
New types of conducting composites using red mud as an inorganic substrate and polyaniline as the conducting phase were prepared. Red mud/polyaniline (RM/PANI) composites were synthesized in acidic aqueous solution by the chemical oxidative polymerization of aniline using ammonium peroxydisulfate as the oxidant. The composites exhibit conductivities in the 0.42-5.2 S cm−1 range, depending on the amount of polyaniline. They were characterized by infrared and UV-vis spectroscopy, scanning electron microscopy and X-ray diffraction. The IR and X-ray results show that PANI is deposited on the RM surface. The composites have a globular structure and the PANI globules synthesized on the surface of RM are smaller than those prepared under the same conditions without the substrate. Thermogravimetric analysis was used for investigation of the thermal stability of the composites. The thermal stability of the conductivity of RM/PANI composites was studied by ageing at 125 °C, the conductivity being measured in situ during this process.  相似文献   

16.
Aliphatic and aromatic diesters of phosphoric acid were tested as dopants improving pro-cessability of polyaniline (PANI) in its doped (conducting) state. It has been found that both aromatic and aliphatic diesters effectively protonate polyaniline, inducing at the same time its solubility. The protonated state has been confirmed by three independent spec-troscopic methods (FTIR, Raman, and UV-vis-NIR). Both aromatic and aliphatic diesters of phosphoric acid plasticize polyaniline which, in turn, allows for the preparation of highly conducting films of PANI or highly conducting blends of PANI with classical nonconducting polymers by thermal processing. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
In recent years, much research has focused on the development of low-cost, printed electrochemical sensor platforms for environmental monitoring and clinical diagnostics. Much effort in this area has been based on utilising the redox properties of conducting polymers, particularly polyaniline (PANI). In tackling the inherent lack of processability exhibited by these materials, several groups have examined various mass-amenable fabrication approaches to obtain suitable thin films of PANI for sensing applications. Specifically, the approaches investigated over the years include the in situ chemical synthesis of PANI, the use of sulphonated derivatives of PANI and the synthesis of aqueousbased nano-dispersions of PANI. Nano-dispersions have shown a great deal of promise for sensing applications, given that they are inkjet-printable, facilitating the patterning of conducting polymer directly to the substrate. We have shown that inkjet-printed films of PANI can be finely controlled in terms of their two-dimensional pattern, thickness, and conductivity, highlighting the level of precision achievable by inkjet printing. Utilising these nanomaterials as inkjet-printable inks opens novel, facile, and economical possibilities for conducting polymer-printed electronic applications in areas of sensing, but also many other application areas such as energy storage, displays, organic light-emitting diodes. Given that inkjet-printing is a scalable manufacturing technique, it renders possible the large-scale production of devices such as sensors for a range of applications. Several successes have emerged from our work and from the work of others in the area of applying PANI in low-cost sensor applications, which is the focus of this review.  相似文献   

18.
In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号