首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
报道了2个取代三联吡啶配体(4′-苯基-2,2′:6′,2″-三联吡啶(L1)和4′-二茂铁基-2,2′:6′,2″-三联吡啶(L2)的Co(Ⅱ)配合物(Co(Ⅱ)(L1)2)(ClO4)2.4CH3CN(1)和(Co(Ⅱ)(L2)2)(ClO4)2H2O(2)的合成及配体L2的配合物1和配合物2的晶体结构,电化学研究表明:在配合物2中,由于Co^2+的作用,二茂铁基的氧化电位较配体L2中的二茂铁  相似文献   

2.
四氮杂大环配合物是生物体内一些金属酶结构单元的模拟物,四氮杂大环铜和镍的配合物可以催化化学振荡反应。近年来,此类反应被广泛地研究[1~4]。目前已报道的作为化学振荡反应催化剂的四氮杂大环配合物的配体都是单环。我们发现一种双四氮杂大环镍(Ⅱ)配合物Ni2L(ClO4)4[L为双(11,13二甲基1,4,7,10四氮杂10,13环十三二烯12亚甲基)]可以作为化学振荡反应的催化剂,本文研究了Ni2L(ClO4)4催化NaBrO3CH2(COOH)2(MA)H3PO4体系的化学振荡反应。1实验部分实验试剂:丙二酸…  相似文献   

3.
合成了Eu(TTA)3L1(Ⅰ)和[Eu(TTA)3]2L2(Ⅱ)二种新的铕(Ⅲ)三元配合物(TTA=噻吩甲酰三氟丙酮一价阴离子、L1=4,5-二氮芴-9-酮、L2=4,5-二氮芴-9-酮连氮)。用元素分析、IR、UV和溶液荧光光谱对配合物进行了表征。探讨了溶剂对Eu(Ⅲ)三元配合物荧光光谱的影响,发现在CH3CN中Eu(Ⅲ)三元配合物发光效果最好,而溶剂DMF会使配合物荧光减弱  相似文献   

4.
合成了2个新的希土冠醚配合物Ln(NO3)3·C26H38N2O4(Ln=La、Ce;C26H38N2O4=1,7,10,16-四氧-4,13-二氮杂-N,N′-二苄基环十八烷)。通过元素分析,红外光谱,拉曼光谱及其1H核磁共振谱进行表征。用四圆衍射仪测定了La(NO3)3·C26H38N2O4·CH3CN的晶体结构。晶体属三斜晶系,P1空间群,晶胞参数:a=1.2869(4)nm,b=1.5868(6)nm,c=0.9147(2)nm;α=101.89(2)°,β=105.38(2)°,γ=71.96(3)°;Z=2。dcald.=1.58g·cm-3,μ(MoKα)=13.25cm-1。中心镧离子与冠醚配体中的4个氧原子和2个氮原子配位,3个硝酸根中的6个氧原子也与La3+配位,形成配位数为12的配合物。  相似文献   

5.
作为系统研究大环硫氮杂冠醚配合物的第二部分,合成了四硫二氮杂环十八冠的硝酸铜配合物[Cu(C_(12)H_(26)N_2S_4)]·(NO_3)_2·H_2O,测定了元素分析和红外光谱。利用X-射线衍射分析方法,测定其晶体结构。晶体学参数a=17.576(4),b=11.753(3),c=10.485(5),V=2163.9(7),Z=4,D_c=1.632g/cm ̄3,F(000)=1108,μ=1.42cm ̄(-1)(MoKα),最终偏离因子R=0.032和Rw=0.034。晶体测定结果表明:有杂原子组成的四硫二氮大环冠醚比含氧冠醚有更大的柔变性;四硫二氮大环冠醚与Cu离子配位前后,大环的构象发生了变化。  相似文献   

6.
本文以2.6─二乙酰吡啶和1,3一二氨基一2一丙醇通过模板合成西佛碱大环配体H_2L(图1),并合成了它的Co(Ⅱ)、Ni(Ⅱ)及Fe(Ⅱ)的双核配合物,重点讨论了Co_2(HL)(ClO_4)_2(NO_3)·4H_2O配合物的光谱与磁性。变温磁化率数据(4─300K)通过用最小二乘法与理论方程拟合,得到磁参数为J=-1.24cm ̄(-1),θ=-0.24K,表明配合物中co(Ⅱ)-Co(Ⅱ)间存在弱的反铁磁相互作用,分子间也存在反铁磁相互作用。  相似文献   

7.
运用 pH电位滴定法,在 25±0.1℃ T, I=0.1(KNO_3)条件下,研究了 Cu(Ⅱ)与三吡啶胺(L’)和队(2’-羟基苄基)-二乙二胺(HL~2)的配位行为。结果表明,L’以二齿的形式和 Cu(Ⅱ)形成稳定的 2:1(L: M)配合物。其配位水分子的离解常数 p Ka为 7.54。对于 HL~2,三个氮原子和酚氧负离子与 Cu(Ⅱ)配位,酚羟基离解常数 p Ka为4.44。在25±0.1℃,I=0.1(KNO_3)条件下,pH=6~9(50mol·L~(-1))范围内,用紫外、可见分光光度法研究了L~1的Cu(Ⅱ)配合物催化对-硝基苯酚乙酸酯(NA)水解动力学行为,发现配合物催化NA酯水解反应速率常数k_(NP)与溶液 pH呈 Sigmoidal型曲线, k_(NP)最大值为 2. 53×10~(-2)L· mol(-1)· s(-1)。说明 L~1的 Cu(Ⅱ)配合物中的 Cu(Ⅱ)-OH~-是有效的亲核试剂,对底物NA酯的水解有较好的催化作用。  相似文献   

8.
本文研究了氧化三甲胺Me3NO与羰基簇合物M4(CO)12-nLn(M=Co,Ir;n=1,2;L=磷配体)的氧转移反应动力学,讨论了反应机理。反应符合二级速率方程:r=K2[Me3NO][M4(CO)12-nLn]M4(CO)12-nLn的氧转移反应活性呈现如下顺序:中心元素不同时Co4(CO)12-nLn<Ir4(CO)12-nLn;取代配体不同时M4(CO)12-n(P(OMe)3)n>M4  相似文献   

9.
多二茂铁基二氮杂己烷及其过渡金属配合物的合成   总被引:14,自引:1,他引:14  
乙二胺与二茂铁甲醛或双二茂铁甲基氟硼酸盐反应,合成了1,6-二(二茂铁基)-2,5-二氮杂己烷和1,1,6,6-四(二茂铁基)-2,5-二氮己烷,它们与过渡金属(Fe^2+,Co^2+,Ni^2+,Cu^2+,Zn^2+)盐在乙醇或乙醇-二氯甲烷中反应,是14种过渡金属配合物,对这些化合物进行了表征,二种配体及其铜配合物用作复合固体推进剂的燃速调节剂时,基本不迁移,而燃速催化效率均超过辛基二茂铁。  相似文献   

10.
将Gly-GlyO,4,4'-联吡啶与Cu(NO3)2.H2O在二次水溶液中反应,合成出以4,4'-bpy为中继基,Cly-GlyO为螯环的新型双核铜配合物,经X射线单晶结构分析确定该配合物晶体的化学结构式为[(H2NCH2CONHCH2COO)Cu(OH)(C10H8N2)Cu(OH)(H2NCH2CONHCH2COO)].9H2O。晶体属P1空间群,晶胞参数α=1.1412nm,b=1.229  相似文献   

11.
Shiren K  Tanaka K 《Inorganic chemistry》2002,41(22):5912-5919
A series of aqua-Cr(III)-dioxolene complexes, [Cr(OH(2))(3,5-Bu(2)SQ)(trpy)](ClO(4))(2) (1s), [Cr(OH(2))(3,5-Bu(2)Cat)(trpy)]ClO(4) (1c), [Cr(OH(2))(3,6-Bu(2)SQ)(trpy)](ClO(4))(2) (2), [Cr(OH(2))(Cat)(trpy)]ClO(4) (3), [Cr(OH(2))(Cl(4)Cat)(trpy)]ClO(4) (4), [Cr(OH(2))(3,5-Bu(2)SQ)(Me(3)-tacn)](ClO(4))(2) (5), [Cr(OH(2))(Cat)(Me(3)-tacn)]ClO(4) (6), and [Cr(OH(2))(Cl(4)Cat)(Me(3)-tacn)]ClO(4) (7) (Bu(2)SQ = di-tert-butyl-o-benzosemiquinonate anion, Bu(2)Cat = di-tert-butylcatecholate dianion, Cat = catecholate dianion, Cl(4)Cat = tetrachlorocatecholate dianion, trpy = 2,2':6',2' '-terpyridine, and Me(3)-tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane), were prepared. On the basis of the crystal structures, redox behavior, and elemental analyses of these complexes, dioxolene in 1c, 3, 4, 6, and 7 coordinated to Cr(III) as the catechol form, and the ligand in 1s, 2, and 5 was linked to Cr(III) with the semiquinone form. All the aqua-Cr(III) complexes reversibly changed to the hydroxo-Cr(III) ones upon dissociation of the aqua proton, and the pK(a) value of the aqua-Cr(III) complexes increased in the order 6 > 3 approximately 1c > 7 > 5 approximately 4 > 1s. Hydroxo-Cr(III)-catechol complexes derived from 1c, 3, 4, 6, and 7 did not show any signs of dissociation of their hydroxy proton. On the other hand, hydroxo-Cr(III)-semiquinone complexes were reduced to hydroxo-Cr(III)-catechol in H(2)O/THF at pH 11 under illumination of visible light.  相似文献   

12.
Three new metal-coordinating ligands, L(1)·4HCl [1-(2-guanidinoethyl)-1,4,7-triazacyclononane tetrahydrochloride], L(2)·4HCl [1-(3-guanidinopropyl)-1,4,7-triazacyclononane tetrahydrochloride], and L(3)·4HCl [1-(4-guanidinobutyl)-1,4,7-triazacyclononane tetrahydrochloride], have been prepared via the selective N-functionalization of 1,4,7-triazacyclononane (tacn) with ethylguanidine, propylguanidine, and butylguanidine pendants, respectively. Reaction of L(1)·4HCl with Cu(ClO(4))(2)·6H(2)O in basic aqueous solution led to the crystallization of a monohydroxo-bridged binuclear copper(II) complex, [Cu(2)L(1)(2)(μ-OH)](ClO(4))(3)·H(2)O (C1), while for L(2) and L(3), mononuclear complexes of composition [Cu(L(2)H)Cl(2)]Cl·(MeOH)(0.5)·(H(2)O)(0.5) (C2) and [Cu(L(3)H)Cl(2)]Cl·(DMF)(0.5)·(H(2)O)(0.5) (C3) were crystallized from methanol and DMF solutions, respectively. X-ray crystallography revealed that in addition to a tacn ring from L(1) ligand, each copper(II) center in C1 is coordinated to a neutral guanidine pendant. In contrast, the guanidinium pendants in C2 and C3 are protonated and extend away from the Cu(II)-tacn units. Complex C1 features a single μ-hydroxo bridge between the two copper(II) centers, which mediates strong antiferromagnetic coupling between the metal centers. Complexes C2 and C3 cleave two model phosphodiesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP), more rapidly than C1, which displays similar reactivity to [Cu(tacn)(OH(2))(2)](2+). All three complexes cleave supercoiled plasmid DNA (pBR 322) at significantly faster rates than the corresponding bis(alkylguanidine) complexes and [Cu(tacn)(OH(2))(2)](2+). The high DNA cleavage rate for C1 {k(obs) = 1.30 (±0.01) × 10(-4) s(-1) vs 1.23 (±0.37) × 10(-5) s(-1) for [Cu(tacn)(OH(2))(2)](2+) and 1.58 (±0.05) × 10(-5) s(-1) for the corresponding bis(ethylguanidine) analogue} indicates that the coordinated guanidine group in C1 may be displaced to allow for substrate binding/activation. Comparison of the phosphate ester cleavage properties of complexes C1-C3 with those of related complexes suggests some degree of cooperativity between the Cu(II) centers and the guanidinium groups.  相似文献   

13.
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions).  相似文献   

14.
Three 5,5'-dicarbamate-2,2'-bipyridine ligands (L = L(1)-L(3)) bearing ethyl, isopropyl or tert-butyl terminals, respectively, on the carbamate substituents were synthesized. Reaction of the ligands L with the transition metal ions M = Fe(2+), Cu(2+), Zn(2+) or Ru(2+) gave the complexes ML(n)X(2)·xG (1-12, n = 1-3; X = Cl, NO(3), ClO(4), BF(4), PF(6), ?SO(4); G = Et(2)O, DMSO, CH(3)OH, H(2)O), of which [Fe(L(2))(3)???SO(4)]·8.5H(2)O (2), [Fe(L(1))(3)???(BF(4))(2)]·2CH(3)OH (7), [Fe(L(2))(3)???(Et(2)O)(2)](BF(4))(2)·2CH(3)OH (8), [ZnCl(2)(L(1))][ZnCl(2)(L(1))(DMSO)]·2DMSO (9), [Zn(L(1))(3)???(NO(3))(2)]·2H(2)O (10), [Zn(L(2))(3)???(ClO(4))(Et(2)O)]ClO(4)·Et(2)O·2CH(3)OH·1.5H(2)O (11), and [Cu(L(1))(2)(DMSO)](ClO(4))(2)·2DMSO (12) were elucidated by single-crystal X-ray crystallography. In the complexes ML(n)X(2)·xG the metal ion is coordinated by n = 1, 2 or 3 chelating bipyridine moieties (with other anionic or solvent ligands for n = 1 and 2) depending on the transition metal and reaction conditions. Interestingly, the carbamate functionalities are involved in hydrogen bonding with various guests (anions or solvents), especially in the tris(chelate) complexes which feature the well-organized C(3)-clefts for effective guest inclusion. Moreover, the anion binding behavior of the pre-organized tris(chelate) complexes was investigated in solution by fluorescence titration using the emissive [RuL(3)](2+) moiety as a probe. The results show that fluorescent recognition of anion in solution can be achieved by the Ru(II) complexes which exhibit good selectivities for SO(4)(2-).  相似文献   

15.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

16.
A supramolecular inclusion complex, [Zn(L1)(H2O)2(beta-CD)](ClO4)2.9.5 H2O (1) was synthesized and characterized structurally and its first-order active species for hydrolysis of esters, [Zn(L1)(H2O)(OH)(beta-CD)](ClO4) (2), was isolated (L1=4-(4'-tert-butylbenzyl)diethylenetriamine; beta-CD=beta-cyclodextrin). The apparent inclusion stability constant of the host and the guest measured in aqueous solution was (5.91+/-0.03)x10(3) for 1. The measured values of the first- and second-order pK(a) values of coordinated water molecules were 8.20+/-0.08 and 10.44+/-0.08, respectively, and were assigned to water molecules occupying the plane and remaining axial positions in a distorted trigonal bipyramid of the [Zn(L1)(H2O)2(beta-CD)]2+ sphere according to the structural analysis of [Zn(L2)(H2O)}2(mu-OH)](ClO4)3 (3) (L2=4-benzyldiethylenetriamine). p-Nitrophenyl acetate (pNA) hydrolysis catalyzed by 1 at pH 7.5-9.1 and 25.0+/-0.1 degrees C exhibited a first-order reaction with various concentrations of pNA and 1, but the pH profile did not indicate saturated kinetic behavior. Second-order rate constants of 0.59 and 24.0 M(-1) s(-1) were calculated for [Zn(L1)(H2O)(OH)(beta-CD)]+ and [Zn(L1)(OH)2(beta-CD)], respectively; the latter exhibited a potent catalytic activity relative to the reported mononuclear and polynuclear Zn(II) species.  相似文献   

17.
The ability of NCNH(-) to construct transition metal coordination polymers and to transmit magnetic coupling was investigated. By introduction of various tetradentate Schiff base ligands (L) and different solvents (S), nine NCNH(-)-bridged manganese(III) coordination complexes were obtained. Their structures can be divided into three types: I) NCNH-bridged chains built on mononuclear [Mn(III)(L)] units, [Mn(III)(L)(mu(1,3)-NCNH)](n) (L=5-Brsalen (1), 5-Clsalen (2)); II) NCNH-bridged chains built on dinuclear [Mn(III) (2)(L)(2)] units, complexes 3-8, [Mn(III) (2)(L)(2)(mu(1,3)-NCNH)]ClO(4)S (L=salen, 5-Fsalen, 5-Clsalen, 5-OCH(3)salen; S=CH(3)OH or C(2)H(5)OH); III) NCNH-bridged Mn(III) dimers linked by hydrogen bonds into a 1D polymer, {[Mn(III)(3-OCH(3)salen)(H(2)O)](2)(mu(1,3)-NCNH)}ClO(4) x 0.5 H(2)O (9, salen=N,N'-bis(salicylidene)-1,2-diaminoethane). In these complexes, the N[triple chemical bond]C--NH(-) resonance structure dominates the bonding mode of the NCNH(-) ligand adopting the mu(1,3)-bridging mode. Magnetic characterization shows that the asymmetric NCNH(-) bridge transmits antiferromagnetic interaction between Mn(III) ions and often favors the weak ferromagnetism caused by spin canting in these one-dimensional chains. However, these complexes exhibit different magnetic behaviors at low temperatures.  相似文献   

18.
Isoelectronic oxo-bridged diiron(III) aquo complexes of the homologous tripodal tetradentate amino acid ligands, N,N'-bis(2-pyridylmethyl)-3-aminoacetate (bpg(-)) and N,N'-bis(2-pyridylmethyl)-3-aminopropionate (bpp(-)), containing [(H(2)O)Fe(III)-(mu-O)-Fe(III)(H(2)O)](4+) cores, oligomerise, respectively, by dehydration and deprotonation, or by dehydration only, in reversible reactions. In the solid state, [Fe(2)(O)(bpp)(2)(H(2)O)(2)](ClO(4))(2) (1(ClO(4))(2)) exhibits stereochemistry identical to that of [Fe(2)(O)(bpg)(2)(H(2)O)(2)](ClO(4))(2) (2(ClO(4))(2)), with the ligand carboxylate donor oxygen atoms and the water molecules located cis to the oxo bridge and the tertiary amine group trans to it. Despite their structural similarity, 1(2+) and 2(2+) display markedly different aggregation behaviour in solution. In the absence of significant water, 1(2+) dehydrates and dimerises to give the tetranuclear complex, [Fe(4)(O)(2)(bpp)(4)](ClO(4))(4) (3(ClO(4))(4)), in which the carboxylate groups of the four bpp(-) ligands act as bridging groups between two [Fe(2)(O)(bpp)(2)](2+) units. Under similar conditions, 2(2+) dehydrates and deprotonates to form dinuclear and trinuclear oligomers, [Fe(2)(O)(OH)(bpg)(2)](ClO(4)) (4ClO(4)) and [Fe(3)(O)(2)(OH)(bpg)(3)](ClO(4)) (5(ClO(4))), related by addition of 'Fe(O)(bpg)' units. The trinuclear 5(ClO(4)), characterised crystallographically as two solvates 5(ClO(4)).3H(2)O and 5(ClO(4)).2MeOH, is based on a hexagonal [Fe(3)(O)(2)(OH)(bpg)(3)](+) unit, formally containing one hydroxo and two oxo bridges. The different aggregation behaviour of 1(ClO(4))(2) and 2(ClO(4))(2) results from the difference of one methylene group in the pendant carboxylate arms of the amino acid ligands.  相似文献   

19.
The iron(III) complexes [Fe(2)(HPTB)(mu-OH)(NO(3))(2)](NO(3))(2).CH(3)OH.2H(2)O (1), [Fe(2)(HPTB)(mu-OCH(3))(NO(3))(2)](NO(3))(2).4.5CH(3)OH (2), [Fe(2)(HPTB)(mu-OH)(OBz)(2)](ClO(4))(2).4.5H(2)O (3), [Fe(2)(N-EtOH-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3CH(3)OH.1.5H(2)O (4), [Fe(2)(5,6-Me(2)-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3.5CH(3)OH.C(2)H(5)OC(2)H(5).0.5H(2)O (5), and [Fe(4)(HPTB)(2)(mu-F)(2)(OH)(4)](ClO(4))(4).CH(3)CN.C(2)H(5)OC(2)H(5).H(2)O (6) were synthesized (HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, N-EtOH-HPTB = N,N,N',N'-tetrakis(N' '-(2-hydroxoethyl)-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, 5,6-Me(2)-HPTB = N,N,N',N'-tetrakis(5,6-dimethyl-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane). The molecular structures of 2-6 were established by single-crystal X-ray crystallography. Iron(II) complexes with ligands similar to the dinucleating ligands described herein have been used previously as model compounds for the dioxygen uptake at the active sites of non-heme iron enzymes. The same metastable (mu-peroxo)diiron(III) adducts were observed during these studies. They can be prepared by adding hydrogen peroxide to the iron(III) compounds 1-6. Using stopped-flow techniques these reactions were kinetically investigated in different solvents and a mechanism was postulated.  相似文献   

20.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号