首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用CO作为探针研究CeO。的表面性质,以及研究CO和CO。与CeO。的相互作用,已有不少报导[‘-’1.Br。ysse等人发现CO在CeO。上的吸附,总伴随着催化剂的还原和COZ的生成;CO。在CeO。上的吸附不总是可逆的,CO。的存在会降低其对CO的催化氧化活性,对反应有抑制的影响,甚至会使表面中毒问.也有报导在CO或COZ气氛下,有证据表明CeO。有不利干活性的碳酸盐物种形成;反应中生成的C()。也可能吸附在表面上形成稳定的碳酸盐,从而抑制反应的继续进行k‘].*0。对O;-O-()催化剂在催化氧化以)中的影响报导比较少问.…  相似文献   

2.
Regulation of the Li2CO3 byproduct is the most critical challenge in the field of non-aqueous Li–O2 batteries.Although considerable efforts have been devoted to preventing Li2CO3 formation,no approaches have suggested the ultimate solution of utilizing the clean Li2O2 reaction instead of that of Li2CO3.Even if extremely pure O2 is used in a Li–O2 cell,its complete elimination is impossible,eventually generating CO2 gas during charge.In this paper,we present the new concept of a CO2-adsorbent spongy electrode(CASE),which is designed to trap the evolved CO2 using adsorption materials.Various candidates composed of amine functional groups(–NH2)for capturing CO2 were screened,with quadrapurebenzylamine(QPBZA)exhibiting superior CO2-adsorbing ability among the proposed candidates.Accordingly,we fabricated the CASE by sandwiching QPBZA between porous carbon layers,which facilitated the transport of gaseous products.The new electrode was demonstrated to effectively capture the evolved CO2 during charge,therefore altering the reaction pathways to the ideal case.It is highly advantageous to mitigate the undesirable CO2 incorporation in the next discharge,resulting in improved cyclability.This novel concept of a CO2-sponging electrode provides an alternative route to the realization of practically meaningful Li–O2 batteries.  相似文献   

3.
近几十年来,气候变暖、海平面上升等全球性气候问题日益严重,对人们赖以生存的自然环境造成了巨大的威胁.为了缓解并最终解决温室效应,多年来人们一直着手研究以二氧化碳(CO2)为主的温室气体的处理方法.CO2捕获和转化是一项新的技术,将捕获得到的CO2直接转化成甲酸、甲醇、甲烷等小分子有机物或药物中间体等高附加值的化合物.卟啉金属-有机框架(Porphyrin Metal-Organic Frameworks,PMOFs)是一种基于卟啉配体和金属节点的多孔配位框架材料.卟啉配体具有良好热稳定性、化学稳定性以及优异独特的光学性能,结合MOFs框架的多孔性带来的对CO2等气体分子的良好吸附性,使得PMOFs在CO2捕获与转化上具有巨大的潜力.首先,介绍了PMOFs合成中常用的构筑策略,包括拓扑导向、柱层策略以及金属-有机笼策略.然后,根据次级结构基元对常见的PMOFs结构进行系统分类,包括基于低价态金属离子、桨轮状M2(COO)4、金属-氧无限长链和硬酸金属-氧簇四类,叙述了各类PMOFs的结构特性和稳定性.随后,通过一些代表性的实例分类总结了PMOFs在CO2捕获与转化上的应用,包括CO2的捕获、环加成反应、光催化反应和电催化反应.最后,总结了PMOFs在四大类应用中具有的优势与挑战,并展望了PMOFs在CO2捕获与转化中的机遇和发展前景.  相似文献   

4.
杨光  李臣芝  陈彤 《分子催化》2015,29(2):143-151
采用并流共沉淀法制备Cu-MnOx催化剂,用于合成气CO/CO2/H2为原料的低温液相甲醇合成.研究了制备条件对Cu-MnOx结构及催化性能的影响,XRD、H2-TPR、CO-TPD表征显示,制备过程中的沉淀p H、煅烧温度等影响Cu-Mn Ox中CuO的分散性、还原性能和对CO的吸附能力.沉淀p H为7、煅烧温度450℃制备的铜锰摩尔比为1∶1的Cu-Mn Ox铜锰相互作用强,CuO分散好,形成的Cu1.5Mn1.5O4晶相利于中间产物甲酸酯的生成,并且其对CO的吸附能力强,H2还原温度适中,利于在预还原条件下生成较多Cu+,因此,表现出最好的催化性能.在170℃、5 MPa反应条件下,以K2CO3为助剂、乙醇为溶剂,碳转率为71.8%,甲醇选择性55.9%,同时生成了较多的碳链增长产物,说明CO在该催化剂上可发生解离吸附,为乙醇等C2+低碳醇的合成提供参考.  相似文献   

5.
利用傅立叶变换红外光谱技术(FT-IR)考察了CO2和CO2+H2在不同形态氧化锆上的吸附和转化行为,结果表明,氧化锆的形态影响CO2的吸附形式和表面物种的生成.无定型氧化锆上主要生成碳酸氢盐和离子碳酸盐,单斜氧化锆上还出现了双齿碳酸盐,而在四方氧化锆上出现最强的线式吸附CO2,并生成聚碳酸盐.在氢气存在的条件下,单斜氧化锆上生成甲烷而在四方氧化锆上则生成甲酸盐.  相似文献   

6.
CO2刺激响应聚合物作为一种智能刺激响应材料,因其在可逆的调控过程中通常只涉及CO2气体的通入和排出而具有广泛的应用前景。CO2荧光传感器是将CO2的浓度变化转化为可检测到的荧光信号,可实现对CO2浓度的实时监测和可逆调控,也有助于我国如期实现2030年前碳达峰和2060年前碳中和的生态文明建设目标。本文简要介绍CO2刺激响应物质的基本原理和常见分类方式,阐述该类物质在构筑荧光传感器方面的妙用,围绕响应灵敏性、响应速率、循环使用性和抗干扰性等传感性能指标的研究成果进行讨论。最后对CO2刺激响应荧光传感器的改进方向和应用前景进行了展望。  相似文献   

7.
A methanol solution of 4,4‘-bipyridine reacts with Cu2A4(H2O)2 to yield coordination polymers of general formula: [Cu2A4(bipy)]n [A: CH2=C(Me)CO2^- (1), CH2=CHCO2^- (2); bipy: 4,4‘-bipyridine]. They were characterized by elemental analyses, IR spectra and thermal analyses. The X-ray structure analyses of 1 show a one-dimensional chain structure where the binuclear structural units Cu2[CH2=C(Me)CO2]4 are bridged by 4,4‘-bipyridine molecules. Furthermore, the binuclear units between adjacent layers can form micropores. The temperature-dependent magnetic susceptibility of 1 indicates that the strong antiferromagnetic interaction exists between copper(Ⅱ) atoms in the binuclear units.  相似文献   

8.
9.
提出用特制活性炭填充柱分离,热导检测器检测,以外标法定量,同时测定O2、CO、CO2.探讨了该方法的校正因子、各组分的线性相关性及微量氧气的分离和定量等.在选定的色谱条件下,O2与CO的分离度达1.7,各组分的相对标准偏差<0.18%,绝对误差<0.04%.  相似文献   

10.
The chemical reduction of carbon dioxide(CO2) has always drawn intensive attentions as it can not only remove CO2 which is the primary greenhouse gas but also produce useful fuels. Industrial synthesis of methanol utilizing copper-based catalysts is a commonly used process for CO2 hydrogenation. Despite extensive efforts on improving its reaction mechanism by identifying the active sites and optimizing the operating temperature and pressure, it is still remains completely unveiled. The selectivities of CO2 electroreduction at copper electrode could mainly be towards carbon monoxide(CO), formic acid(HCOOH), methane(CH4) or ethylene(C2H4), which depends on the chemical potentials of hydrogen controlled by the applied potential. Interestingly, methanol could hardly be produced electrochemically despite utilizing metallic copper as catalysts in both processes. Moreover, the mechanistic researches have also been performed aiming to achieve the higher selectivity towards more desirable higher hydrocarbons. In this work, we review the present proposals of reaction mechanisms of copper catalyzing CO2 reduction in industrial methanol synthesis and electrochemical environment in terms of density functional theory(DFT) calculations, respectively. In addition, the influences of the simulation methods of solvation and electrochemical model at liquid-solid interface on the selectivity are discussed and compared.  相似文献   

11.
提出用特制活性炭填充柱分离,热导检测器检测,以外标法定量,同时测定O2、CO、CO2。探讨了该方法的校正因子、各组分的线性相关性及微量氧气的分离和定量等。在选定的色谱条件下,O2与CO的分离度达1.7,各组分的相对标准偏差<O.18%,绝对误差<0.04%。  相似文献   

12.
CO2在金属表面活化的UBI-QEP方法研究   总被引:1,自引:0,他引:1  
应用UBI-QEP方法估算了金属表面上形成的活化吸附态CO2-在Cu(111),Pd(111),Fe(111)和Ni(111)表面上的吸附热,计算了各种相关反应的活化能垒.结果表明,CO2-在4种过渡金属表面的相对稳定性的顺序为Fe>Ni>Cu>Pd;在Fe和Ni表面上CO2-较易生成,且容易进一步发生解离反应,在Fe表面会解离成C和O吸附原子,而在Ni表面上解离的最终产物为CO和O;在Cu表面上,CO2-虽较难形成,但其加氢反应的活化能比解离反应低,因此加氢反应是其进一步活化的有效模式;在Pd表面上,CO2-吸附态在能量上很不稳定,所以CO2在Pd表面上不容易活化.  相似文献   

13.
Owing to the greenhouse effect, the rise of carbon dioxide concentration in the atmosphere is a global environmental issue.  相似文献   

14.
等离子法转化CO2为CO研究进展   总被引:3,自引:0,他引:3  
评述了国内外等离子法转化CO2 为CO的发展状态与趋势 ,重点介绍了非平衡等离子体技术转化CO2 为CO的发展 ,探讨了它的基本反应机理 ,并提出了提高二氧化碳转化率的有效途径是负载型催化剂的研制及研究二氧化碳与有机物的氧化偶联反应 (如CO2 +2CH3 OH·(CH3 O) 2 CO +H2 O)具有重要意义。这为CO2 的化工利用开辟了一条广阔而有效的途径 ,也是控制温室效应 ,促进可持续发展的有效手段  相似文献   

15.
聚甲基丙烯酸甲酯的燃烧特性以及CO和CO2的生成机理   总被引:4,自引:1,他引:4  
采用质谱,色谱和锥形量热仪研究了自由基聚合的聚甲基丙烯酸甲酯(PMMA)燃烧过程中CO和CO2的生成机理及恒温条件下的燃烧情况,结果表明,在有氧条件下,自由基聚合的PMMA的解聚方式有三种,除了链末端的双键断裂和主链上的无规则C-C键的断裂外,还存在侧链酯基的断裂,其主要产物为CO2和CH3OH;在燃烧过程中,单体MMA的氧化主要的耗氧反应,其产物为CO2和少量的CO,并且CO2和CO的产率与反应温度以及样品的厚度基本无关,通过耗氧量估算得出,PMMA在空气中燃烧反应的热效应大约为22.9MJ/kg。  相似文献   

16.
结合常规离子液体和功能型离子液体在吸收CO2方面的优势,将两类咪唑类离子液体进行混合,对其吸收CO2的效果和再生性能进行了实验研究。结果表明,两类咪唑类离子液体混合后流动性明显改善,与CO2接触气液传质顺畅;常规离子液体[bmim][BF4]和[bmim][Tf2N]与胺功能型离子液体[NH2e-mim][BF4]混合物较单一的离子液体吸收CO2的量大,[bmim][CH3CO2]与[NH2e-mim][BF4]混合后较单一的[bmim][CH3CO2]吸收量有明显的减低;随着常规咪唑类离子液体阳离子碳链增长,混合离子液体吸收CO2的效果变强;与胺乙基功能型离子液体混合吸收CO2时,阴离子为[Tf2N]的常规咪唑类离子液体要比阴离子为[BF4]的吸收效果好;离子液体混合物吸收CO2后经再生循环利用10次,混合物质量基本不变,循环使用后吸收CO2性能为初始吸收性能的75%~85%。  相似文献   

17.
在负载铼催化剂上由CO2/H合成甲醇的研究   总被引:2,自引:0,他引:2  
  相似文献   

18.
赵洁  邓帅  赵力  赵睿恺 《化学进展》2022,34(3):643-664
大型湿气源排放中普遍存在的水汽是制约吸附碳捕集规模化发展的重要挑战之一。H2O的极性往往会导致吸附材料的CO2捕集率降低甚至出现失效,也会造成捕集系统产生温降、压降等寄生损失,甚至形成设备腐蚀、吸附剂中毒等不利影响,最终额外能耗和成本大幅提高。为解决上述挑战,深入理解CO2与H2O共吸附过程的作用机制,据此开发成本合理、再生能耗低且对水气不敏感的高效CO2吸附剂及吸附技术是实现湿气源下高效吸附碳捕集的重要途径。目前,由于分散在多个领域且各有侧重,关于H2O对CO2吸附影响的机制分析缺乏汇总与概括,难以形成相对统一的观点。本文针对CO2与H2O共吸附过程,从宏观与微观层面进行了详细综述。首先,基于共吸附机制的基础研究,依次介绍了竞争吸附、变湿吸附和呼吸效应领域的研究进展并进行了简要评价。其次,基于共吸附的应用研究,阐述了湿气源CO2捕集技术的吸附剂研发与工艺改进两部分的现状及进展,也对不同湿气源下CO2捕集水平进行了简要评价。最后,总结了目前研究中的不足之处并展望了未来的研究方向。本文将分散于各领域的CO2与H2O共吸附过程进行集中归纳、分析和对比,或可为湿气源碳捕集技术提供有效的指导。  相似文献   

19.
采用量子化学方法探究了还原区高浓度NO存在下zigzag结构焦炭氮中N的迁移转化规律,并通过构建含羟基焦炭N模型,从分子层面对氧存在下焦炭N的转化特性进行了系统的理论计算。结果表明,还原区NO的存在会与焦炭中的N结合为N_2释放;并且氧的存在增强了焦炭表面化学活性,进一步促进了焦炭中N的析出。还原区氧和NO的共存使得焦炭中N的释放与C的燃烧同时发生,表现为NO与焦炭中N结合为N_2的同时,伴随有氧将焦炭中C氧化成CO_2或CO。动力学计算C燃烧产物的限速步速率常数发现,低温低氧条件下C更容易氧化生成CO;随着温度的升高,CO_2生成速率明显增大,高温更利于CO_2的生成。  相似文献   

20.
CO2加氢合成甲醇催化反应中CO的作用   总被引:1,自引:0,他引:1  
研究了铜基催化剂上CO2加氢合成甲醇反应中掺人CO的作用,结果表明,在原料中添加少量CO,甲醇的选择性提高38%,收率提高25%;TPD-MS和TPSR-MS结果表明,CO能抑制催化剂表面起逆水汽变换作用的活性位对CO2的吸附,从而提高了CO2加氢合成甲醇的选抒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号